精英家教網 > 初中數學 > 題目詳情
如圖過Q點的三條直線AA′,BB′,CC′把△ABC分成六個小三角形,已知S△AQB'=S△BQA'=4,S△CQA'=3,則x=S△AQC'=______,y=S△BQC'=______,z=S△CQB'=______.
∵S△AQB:A△AQC=B到AA′之距:C到AA′之距=S△BQA′:S△CQA′,
∴(x+y):(4+z)=4:3.
同理(4+z):(4+3)=x:y,(4+3):(x+y)=z:4.
三個方程相乘,得
xz=3y.
4+z
7
=
3
z

解得,z=-7(舍去),z=3.
從而x=y=
14
3

故答案為:
14
3
,
14
3
,3.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,在直角坐標系中,△AOB是等邊三角形,若B點的坐標是(2,0),則A點的坐標是( 。
A.(2,1)B.(1,2)C.(
3
,1)
D.(1,
3

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EFBC交AB、AC于E、F.
(1)圖中有幾個等腰三角形?猜想:EF與BE、CF之間有怎樣的關系,并說明理由.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OEBC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關系又如何?說明你的理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AE,AF三等分∠BAD,若BE=2,CF=1,則最接近矩形面積的是( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

一條直線截△ABC的邊BC、CA、AB(或它們的延長線)于點D、E、F.
求證:
BD
DC
CE
EA
AF
FB
=1

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在△ABC中,BC=5,AC=12,AB=13,在AB、AC上分別取點D、E,使線段DE將△ABC分成面積相等的兩部分,則這樣線段的最小值是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知凸四邊形ABCD的兩對角線BD與AC之比為k,菱形EFGH各頂點位于四邊形ABCD的順次四邊之上,且EFAC,FGBD,則四邊形ABCD與菱形EFGH的面積之比為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在直角坐標系中,畫出三角形AOB,使A、B兩點的坐標分別為A(-2,-4),B(-6,-2).試求出三角形AOB的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知A(-4,0)、B(-2,3),則S△AOB=______.

查看答案和解析>>

同步練習冊答案