【題目】如圖,等腰中,,,且AC邊在直線a上,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①可得到點(diǎn),此時(shí);將位置①的三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn),此時(shí);將位置②的三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn),此時(shí) ________,…,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有顏色不同的黑、白兩種球共60個(gè),它們除顏色不同外,其余都相同,王穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中攪勻,經(jīng)過大量重復(fù)上述摸球的過程,發(fā)現(xiàn)摸到白球的頻率定于0.25.
(1)請估計(jì)摸到白球的概率將會(huì)接近________;
(2)計(jì)算盒子里白、黑兩種顏色的球各有多少個(gè)?
(3)如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬州區(qū)中小學(xué)社會(huì)活動(dòng)實(shí)踐基地開展了人與社會(huì)、人與自然、人與自我的綜合實(shí)踐活動(dòng),其中高空項(xiàng)目能培養(yǎng)學(xué)生不怕困難,不畏艱險(xiǎn)的精神.在高空項(xiàng)目中有以下四個(gè)特色實(shí)踐活動(dòng):“A.合力制勝,B.空中斷橋,C.絕壁飛胎,D.天羅地網(wǎng)”.為了解學(xué)生最喜愛哪項(xiàng)綜合實(shí)踐活動(dòng),隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每位學(xué)生只能選擇一項(xiàng)),將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中提供的信息回答下列問題:
(1)本次一共調(diào)查了 名學(xué)生,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)現(xiàn)有最喜愛A,B,C,D活動(dòng)項(xiàng)目的學(xué)生各一人,學(xué)校要從這四人中隨機(jī)選取兩人交流活動(dòng)體會(huì),請用列表或畫樹狀圖的方法求出恰好選取最喜愛C和D項(xiàng)目的兩位學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)y=-x2-2x+3說法正確的是( 。
A. 當(dāng)時(shí),函數(shù)最大值4
B. 當(dāng)時(shí),函數(shù)最大值2
C. 將其圖象向上平移3個(gè)單位后,圖象經(jīng)過原點(diǎn)
D. 將其圖象向左平移3個(gè)單位后,圖象經(jīng)過原點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-3x+.
(1)該二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)是______;
(2)將y=化成y=a(x-h)2+k的形式,并寫出頂點(diǎn)坐標(biāo);
(3)在坐標(biāo)軸中畫出此拋物線的大致圖象;
(4)寫出不等式>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長為16m,寬為6m,拋物線的最高點(diǎn)C離地面AA1的距離為8m.
(1)按如圖所示的直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式.
(2)一大型汽車裝載某大型設(shè)備后,高為7m,寬為4m,如果該隧道內(nèi)設(shè)雙向行車道,那么這輛貸車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到正方形,依此方式,繞點(diǎn)連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點(diǎn)的坐標(biāo)為(1,0),那么點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+bx+c=0.
(1)若b=2m﹣1,m+c=﹣6,判斷方程根的情況;
(2)若方程有兩個(gè)相等的非零實(shí)數(shù)根,且b2﹣c2﹣4=0,求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn).
(l)求拋物線的表達(dá)式;
(2)如圖l,若點(diǎn)為第二象限拋物線上一動(dòng)點(diǎn),連接,求四邊形面積的最大值,并求此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,在軸上是否存在一點(diǎn)使得為等腰三角形?若存在,請求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com