【題目】如圖,已知等邊△ABC邊長(zhǎng)為1,D是△ABC外一點(diǎn)且∠BDC=120°,BD=CD,∠MDN=60°求△AMN的周長(zhǎng).
【答案】2.
【解析】
延長(zhǎng)AC到E,使CE=BM,連接DE,求證△BMD≌△CDE可得∠BDM=∠CDE,進(jìn)而求證△MDN≌△EDN可得MN=NE=NC+CE=NC+BM,即可計(jì)算△AMN周長(zhǎng),即可解題.
延長(zhǎng)AC到E,使CE=BM,連接DE,(如圖)
∵BD=DC,∠BDC=120°,
∴∠CBD=∠BCD=30°,
∵∠ABC=∠ACB=60°,
∴∠ABD=∠ACD=∠DCE=90°,
∴△BMD≌△CDE,
∴∠BDM=∠CDE,DM=DE,
又∵∠MDN=60°,
∴∠BDM+∠NDC=60°,
∴∠EDC+∠NDC=∠NDE=60°=∠NDM,
又∵DN=DN,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC+CE=NC+BM,
所以△AMN周長(zhǎng)=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,聯(lián)結(jié)AP并延長(zhǎng)AP交CD于F點(diǎn),
(1)求證:四邊形AECF為平行四邊形;
(2)如果PA=PC,聯(lián)結(jié)BP,求證:△APB△EPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省計(jì)劃5年內(nèi)全部地級(jí)市通高鐵.某高鐵在泰州境內(nèi)的建設(shè)即將展開(kāi),現(xiàn)有大量的沙石需要運(yùn)輸.某車隊(duì)有載質(zhì)量為8t、10t的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸100t沙石.
(1)求某車隊(duì)載質(zhì)量為8t、10t的卡車各有多少輛;
(2)隨著工程的進(jìn)展,某車隊(duì)需要一次運(yùn)輸沙石165t以上,為了完成任務(wù),準(zhǔn)備新增購(gòu)這兩種卡車共7輛,車隊(duì)有多少種購(gòu)買方案?請(qǐng)你一一求出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)、、在直線上,點(diǎn)、、、在直線上,若,從如圖所示的位置出發(fā),沿直線向右勻速運(yùn)動(dòng),直到與重合.運(yùn)動(dòng)過(guò)程中與矩形重合部分的面積隨時(shí)間變化的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種樂(lè)器有10個(gè)孔,依次記作第1孔,第2孔,……,第10孔,演奏時(shí),第n孔與其音色的動(dòng)聽(tīng)指數(shù)D之間滿足關(guān)系式,該樂(lè)器的最低動(dòng)聽(tīng)指數(shù)為4k+106,求常數(shù)k的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線交x軸于A(-2,0),B(3,0)兩點(diǎn),交y軸于點(diǎn)C(0,6).
(1)寫(xiě)出a,b,c的值;
(2)連接BC,點(diǎn)P為第一象限拋物線上一點(diǎn),過(guò)點(diǎn)A作AD⊥x軸,過(guò)點(diǎn)P作PD⊥BC于交直線AD于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t,AD長(zhǎng)為h.
①求h與t的函數(shù)關(guān)系式和h的最大值(請(qǐng)求出自變量t的取值范圍);
②過(guò)第二象限點(diǎn)D作DE∥AB交BC于點(diǎn)E,若DP=CE,時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC=2,∠C=90°,D是的中點(diǎn),DE⊥DF,點(diǎn)E,F分別在AC,BC上,則四邊形CFDE的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com