【題目】正方形ABCD的邊長為1AB、AD上各有一點P、Q,如果的周長為2,求的度數(shù).

【答案】45°.

【解析】

首先從△APQ的周長入手求出PQ=DQ+BP,然后將△CDQ逆時針旋轉(zhuǎn)90°,使得CDCB重合,然后利用全等來解.

解:如圖所示,

△APQ的周長為2,即AP+AQ+PQ=2①,

正方形ABCD的邊長是1,即AQ+QD=1,AP+PB=1,

∴AP+AQ+QD+PB=2②,

①-②得,PQ-QD-PB=0,

∴PQ=PB+QD

延長ABM,使BM=DQ.連接CM,△CBM≌△CDQSAS),

∴∠BCM=∠DCQ,CM=CQ,

∵∠DCQ+∠QCB=90°

∴∠BCM+∠QCB=90°,即∠QCM=90°

PM=PB+BM=PB+DQ=PQ

△CPQ△CPM中,

CP=CP,PQ=PMCQ=CM,

∴△CPQ≌△CPMSSS),

∴∠PCQ=∠PCM=∠QCM=45°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,邊長為1的正方形的兩個頂點,分別在軸、軸的正半軸上,點是原點.現(xiàn)在將正方形繞原點順時針旋轉(zhuǎn),當(dāng)點第一次落在直線上時停止.旋轉(zhuǎn)過程中,邊交直線于點,邊交軸于點

1)若點,求此時點的坐標(biāo)及的值;

2)若的周長是,在旋轉(zhuǎn)過程中,值是否會發(fā)生變化?若不變,請求出這個定值,若有變化,請說明理由;

3)設(shè),當(dāng)為何值時的面積最小,最小值是多少?并直接寫出此時內(nèi)切圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)可以讓人高雅,益智,豪情逸致,某中學(xué)為開拓學(xué)生視野,開展課外學(xué)數(shù)學(xué)活動,隨機調(diào)查了九年級部分學(xué)生一周的課外學(xué)習(xí)數(shù)學(xué)時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:

1)本次調(diào)查的學(xué)生總數(shù)為____________人,被調(diào)查學(xué)生課外學(xué)習(xí)數(shù)學(xué)時間的中位數(shù)是____________小時,眾數(shù)是      小時;

2)請你補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,課外學(xué)習(xí)數(shù)學(xué)時間為5小時的扇形的圓心角度數(shù)是____________;

4)九年級有學(xué)生700人,估計九年級一周課外學(xué)習(xí)數(shù)學(xué)時間不少于5小時小時的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生數(shù)學(xué)期末考試情況,小方隨機抽取了部分學(xué)生的數(shù)學(xué)成績(分數(shù)都為整數(shù))為樣本,分為A分;B分;C分;D分四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果制成如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:

1)這次隨機抽取的學(xué)生共有多少人?

2)請將條形統(tǒng)計圖補充完整;

3)該校九年級共有學(xué)生人,若分數(shù)為分以上()為及格,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)榧案竦膶W(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:(1+-4=0 ;(2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點DAB邊上,點D到點A的距離與點D到點C的距離相等.

(1)利用尺規(guī)作圖作出點D,不寫作法但保留作圖痕跡.

(2)若ABC的底邊長5,周長為21,求BCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦ACBD交于點E,且ACBD,連接AD,BC

1)求證:ADB≌△BCA;

2)若ODAC,AB4,求弦AC的長;

3)在(2)的條件下,延長AB至點P,使BP2,連接PC.求證:PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(bc為常數(shù))

1)若拋物線的頂點坐標(biāo)為(1,1),求bc的值;

2)若拋物線上始終存在不重合的兩點關(guān)于原點對稱,求c的取值范圍;

3)在(1)的條件下,存在正實數(shù)m,n( mn),當(dāng)mxn時,恰好有,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委準(zhǔn)備組織“漢字聽寫”大賽.九年級一班為推選學(xué)生參加學(xué)校的這次活動,在班級內(nèi)舉行了一次選拔賽,并把選拔賽的成績分為,,四個等級,根據(jù)成績統(tǒng)計繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所給出的信息解答下列各題.

1)九年級一班共有多少人?

2)補全條形統(tǒng)計圖,并求出扇形統(tǒng)計圖中等級為“D”的部分所對應(yīng)的圓心角度數(shù);

3)現(xiàn)準(zhǔn)備從等級為“A”的四名同學(xué)中,隨機抽選出兩名同學(xué)代表班級參加學(xué)校的“漢字聽寫”大賽.已知同一小組的李華和張軍的成績都是“A”等,請用列表法(或樹狀圖法)求恰好抽到李華和張軍的概率.

查看答案和解析>>

同步練習(xí)冊答案