【題目】某市開(kāi)展一項(xiàng)自行車(chē)旅游活動(dòng),線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問(wèn)沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

【答案】解:由題意可知∠DCA=180°﹣75°﹣45°=60°,
∵BC=CD,
∴△BCD是等邊三角形.
過(guò)點(diǎn)B作BE⊥AD,垂足為E,如圖所示:

由題意可知∠DAC=75°﹣30°=45°,
∵△BCD是等邊三角形,
∴∠DBC=60° BD=BC=CD=20km,
∴∠ADB=∠DBC﹣∠DAC=15°,
∴BE=sin15°BD≈0.25×20≈5m,
∴AB= = ≈7m,
∴AB+BC+CD≈7+20+20≈47m.
答:從A地跑到D地的路程約為47m.
【解析】求出∠DCA的度數(shù),再判斷出BC=CD,據(jù)此即可判斷出△BCD是等邊三角形.過(guò)點(diǎn)B作BE⊥AD,垂足為E,求出∠DAC的度數(shù),利用三角函數(shù)求出AB的長(zhǎng),從而得到AB+BC+CD的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過(guò)點(diǎn)C作CE∥AD交△ABC的外接圓O于點(diǎn)E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(a,b)為第一象限內(nèi)一點(diǎn),且a<b.連結(jié)OA,并以點(diǎn)A為旋轉(zhuǎn)中心把OA逆時(shí)針轉(zhuǎn)90°后得線段BA.若點(diǎn)A、B恰好都在同一反比例函數(shù)的圖象上,則 的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位同學(xué)用質(zhì)地、大小完全一樣的紙片分別制作一張卡片a、b、c,收集后放在一個(gè)不透明的箱子中,然后每人從箱子中隨機(jī)抽取一張.
(1)用列表或畫(huà)樹(shù)狀圖的方法表示三位同學(xué)抽到卡片的所有可能的結(jié)果;
(2)求三位同學(xué)中至少有一人抽到自己制作卡片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y= x﹣1與拋物線y=﹣ x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為﹣8,點(diǎn)P是直線AB上方的拋物線上的一動(dòng)點(diǎn)(不與點(diǎn)A,B重合).

(1)求該拋物線的函數(shù)關(guān)系式;
(2)連接PA、PB,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,是否存在某一位置,使△PAB恰好是一個(gè)以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)P作PD∥y軸交直線AB于點(diǎn)D,以PD為直徑作⊙E,求⊙E在直線AB上截得的線段的最大長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程中,有兩個(gè)相等實(shí)數(shù)根的方程是(
A.x(x﹣1)=0
B.x2﹣x+1=0
C.x2﹣2=0
D.x2﹣2x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從邵陽(yáng)市到長(zhǎng)沙的高鐵列車(chē)?yán)锍瘫绕湛炝熊?chē)?yán)锍炭s短了75千米,運(yùn)行時(shí)間減少了4小時(shí),已知邵陽(yáng)市到長(zhǎng)沙的普快列車(chē)?yán)锍虨?06千米,高鐵列車(chē)平均時(shí)速是普快列車(chē)平均時(shí)速的3.5倍.
(1)求高鐵列車(chē)的平均時(shí)速;
(2)某日劉老師從邵陽(yáng)火車(chē)南站到長(zhǎng)沙市新大新賓館參加上午11:00召開(kāi)的會(huì)議,如果他買(mǎi)到當(dāng)日上午9:20從邵陽(yáng)市火車(chē)站到長(zhǎng)沙火車(chē)南站的高鐵票,而且從長(zhǎng)沙火車(chē)南站到新大新賓館最多需要20分鐘.試問(wèn)在高鐵列車(chē)準(zhǔn)點(diǎn)到達(dá)的情況下他能在開(kāi)會(huì)之前趕到嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱軸為直線x=1,給出下列結(jié)論:
①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.
則正確的結(jié)論個(gè)數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) 的圖象如圖.

(1)求它的對(duì)稱軸與x軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線沿它的對(duì)稱軸向上平移,設(shè)平移后的拋物線與x軸,y軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案