(2006•荊門)某環(huán)保器材公司銷售一種市場(chǎng)需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,經(jīng)銷過(guò)程中測(cè)出銷售量y(萬(wàn)件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷量y(萬(wàn)件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出該公司銷售該種產(chǎn)品年獲利w(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額)當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬(wàn)元,請(qǐng)你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價(jià)的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

【答案】分析:(1)由圖象可知y關(guān)于x的函數(shù)關(guān)系式是一次函數(shù),設(shè)y=kx+b,用“兩點(diǎn)法”可求解析式;
(2)根據(jù)年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額,列出函數(shù)關(guān)系式;
(3)求出年銷售獲利等于57.5萬(wàn)元時(shí),銷售單價(jià)x的值,從而確定銷售單價(jià)x的范圍,及二次函數(shù)w最大時(shí),x的值.
解答:解:(1)由題意,設(shè)y=kx+b,圖象過(guò)點(diǎn)(70,5),(90,3),

解得
∴y=-x+12.

(2)由題意,得
w=y(x-40)-z
=y(x-40)-(10y+42.5)
=(x+12)(x-40)-10(x+12)-42.5
=-0.1x2+17x-642.5=(x-85)2+80.
當(dāng)85元時(shí),年獲利的最大值為80萬(wàn)元.

(3)令w=57.5,得-0.1x2+17x-642.5=57.5.
整理,得x2-170x+7000=0.
解得x1=70,x2=100.
由圖象可知,要使年獲利不低于57.5萬(wàn)元,銷售單價(jià)應(yīng)在70元到100元之間.
又因?yàn)殇N售單價(jià)越低,銷售量越大,
所以要使銷售量最大,又使年獲利不低于57.5萬(wàn)元,銷售單價(jià)應(yīng)定為70元.
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)的求法及一次函數(shù)、二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年河北省廊坊市文安縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2006•荊門)某環(huán)保器材公司銷售一種市場(chǎng)需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,經(jīng)銷過(guò)程中測(cè)出銷售量y(萬(wàn)件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷量y(萬(wàn)件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出該公司銷售該種產(chǎn)品年獲利w(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額)當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬(wàn)元,請(qǐng)你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價(jià)的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省紹興市紹興縣錢清鎮(zhèn)中數(shù)學(xué)中考模擬試卷(解析版) 題型:解答題

(2006•荊門)某環(huán)保器材公司銷售一種市場(chǎng)需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,經(jīng)銷過(guò)程中測(cè)出銷售量y(萬(wàn)件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷量y(萬(wàn)件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出該公司銷售該種產(chǎn)品年獲利w(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額)當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬(wàn)元,請(qǐng)你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價(jià)的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•荊門)某環(huán)保器材公司銷售一種市場(chǎng)需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,經(jīng)銷過(guò)程中測(cè)出銷售量y(萬(wàn)件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷量y(萬(wàn)件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出該公司銷售該種產(chǎn)品年獲利w(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額)當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬(wàn)元,請(qǐng)你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價(jià)的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《不等式與不等式組》(02)(解析版) 題型:選擇題

(2006•荊門)某射箭運(yùn)動(dòng)員在一次比賽中前6次射擊共擊中52環(huán),如果他要打破89環(huán)(10次射擊,每次射擊最高中10環(huán))的記錄,則他第7次射擊不能少于( )
A.6環(huán)
B.7環(huán)
C.8環(huán)
D.9環(huán)

查看答案和解析>>

同步練習(xí)冊(cè)答案