【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn), ,當(dāng)點(diǎn)滿足, 時(shí),則稱點(diǎn)為點(diǎn),的“四合點(diǎn)”.例如:,當(dāng)點(diǎn)滿足,則點(diǎn)為點(diǎn),的“四合點(diǎn)”.
若點(diǎn),則點(diǎn)的“四合點(diǎn)” 的坐標(biāo)為
如圖,點(diǎn),點(diǎn)是直線上一點(diǎn),點(diǎn)為點(diǎn)的“四合點(diǎn)”,
①請(qǐng)求出關(guān)于的函數(shù)關(guān)系式;
②已知點(diǎn),在直線上是否存在點(diǎn),使得與相似,若存在,請(qǐng)求出此時(shí)點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)①;②或.
【解析】
(1)根據(jù)“四合點(diǎn)”定義直接解得;(2)①根據(jù)“四合點(diǎn)”定義用t表示出T點(diǎn)坐標(biāo),再用x表示出t,代入y即可得到函數(shù)關(guān)系式;②根據(jù)E、C點(diǎn)坐標(biāo)易知△OEC為等邊三角形,即可得到△CTO也為等邊三角形,又可根據(jù)得到OQ=ET,再根據(jù)垂直平分線可得到,進(jìn)而得到OT解析式,再通過(guò)交點(diǎn)解得T,進(jìn)而得到D點(diǎn)坐標(biāo).
若點(diǎn),
則點(diǎn)的“四合點(diǎn)” 的坐標(biāo)為
①點(diǎn)為與點(diǎn)的四合點(diǎn)
②如圖
為等邊三角形
又與相似
為等邊三角形
又直線垂直平分,
且點(diǎn)為直線 上一點(diǎn)
垂直平分
直線
令,
解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形對(duì)角線與交于點(diǎn)以邊分別為邊長(zhǎng)作正方形正方形,連接.
(1)求證:;
(2)若,請(qǐng)求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+m(m為常數(shù))的圖象與x軸交于A(﹣3,0),與y軸交于點(diǎn)C.以直線x=﹣1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a>0)經(jīng)過(guò)A,C兩點(diǎn),與x軸正半軸交于點(diǎn)B.
(1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式;
(2)P為線段AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與C、A不重合)過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)D,連接CD,AD,點(diǎn)P的橫坐標(biāo)為n,當(dāng)n為多少時(shí),△CDA的面積最大,最大面積為多少?
(3)在對(duì)稱軸上是否存在一點(diǎn)E,使∠ACB=∠AEB?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,點(diǎn)是內(nèi)一個(gè)動(dòng)點(diǎn),且滿足,當(dāng)線段取最小值時(shí),記,線段上一動(dòng)點(diǎn)繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到點(diǎn),且滿足 ,則的最小值為 _____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).直線y=ax與拋物線y=ax2﹣2ax﹣1(a≠0)圍成的封閉區(qū)域(不包含邊界)為W.
(1)求拋物線頂點(diǎn)坐標(biāo)(用含a的式子表示);
(2)當(dāng)a=時(shí),寫出區(qū)域W內(nèi)的所有整點(diǎn)坐標(biāo);
(3)若區(qū)域W內(nèi)有3個(gè)整點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中畫出等腰直角三角形MON,使點(diǎn)N在格點(diǎn)上,且∠MON=90°;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點(diǎn)為頂點(diǎn)的四個(gè)全等的直角三角形和一個(gè)正方形,且正方形ABCD面積沒(méi)有剩余(畫出一種即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以Rt△ABC各邊為邊分別向外作等邊三角形,編號(hào)為①、②、③,將②、①如圖所示依次疊在③上,已知四邊形EMNC與四邊形MPQN的面積分別為9與7,則斜邊BC的長(zhǎng)為( 。
A.5B.9C.10D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com