【題目】如圖,在矩形ABCD中,已知AB2,點EBC邊的中點,連接AE,AB′EABE關于AE所在直線對稱,若B′CD是直角三角形,則BC邊的長為_____

【答案】42

【解析】

連接BB′,根據(jù)直角三角形的判定定理得到∠BB′C90°,求得∠B′CD90°,(1)如圖1∠B′DC90°,(2)如圖2∠CB′D90°,則B,B′D三點共線,設AE,BB′交于F,根據(jù)相似三角形的性質即可得到結論.

解:連接BB′,

∵BEB′EEC

∴∠BB′C90°,

∴∠B′CD90°,

1)如圖1,∠B′DC90°,

則四邊形ABEB′ECDB′是正方形,

∴BC2AB4,

2)如圖2∠CB′D90°,

B,B′D三點共線,

AE,BB′交于F

F,B′是對角線BD的三等分點,

∵△BCB′∽△CDB′,

,

∴BCCD2,

故答案為:42

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結AP并延長APCDF點,

1)求證:△CBE≌△CPE;

2)求證:四邊形AECF為平行四邊形;

3)若矩形ABCD的邊AB6,BC4,求△CPF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;

(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕剩

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AD+2,已知點E是邊AB上的一動點(不與A、B重合)將△ADE沿DE對折,點A的對應點為P,當△APB是等腰三角形時,AE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線yx+4與拋物線y=﹣x2+bx+cbc是常數(shù))交于A、B兩點,點Ax軸上,點By軸上.設拋物線與x軸的另一個交點為點C

1)求該拋物線的解析式;

2P是拋物線上一動點(不與點A、B重合),

①如圖2,若點P在直線AB上方,連接OPAB于點D,求的最大值;

②如圖3,若點Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點EF恰好落在y軸上,直接寫出對應的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,有三個小正方形已經(jīng)涂成灰色,若再任意涂灰2個白色小正方形(每個白色小正方形被涂成灰色的可能性相同),使新構成灰色部分的圖形是軸對稱圖形的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】果農周大爺家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,他記錄了10天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應值如表所示:

1)請直接寫出px的函數(shù)關系式及自變量x的取值范圍;

2)求yx的函數(shù)關系式,并寫出自變量x的取值范圍;

3)在這10天中,哪一天銷售額達到最大,最大銷售額是多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將RtABC繞直角頂點A,沿順時針方向旋轉后得到RtAB1C1,當點B1恰好落在斜邊BC的中點時,則∠B1AC=(

A.25°B.30°C.40°D.60°

查看答案和解析>>

同步練習冊答案