【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

【答案】(1); B點(diǎn)坐標(biāo)為(3,1);(2) P點(diǎn)坐標(biāo)為(,0).

【解析】1)先把A點(diǎn)坐標(biāo)代入y=求出k得到反比例函數(shù)解析式;然后把B(3,m)代入反比例函數(shù)解析式求出m得到B點(diǎn)坐標(biāo);

(2)作A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A′,連接BA′x軸于P點(diǎn),則A′(1,﹣3),利用兩點(diǎn)之間線段最短可判斷此時(shí)此時(shí)PA+PB的值最小,再利用待定系數(shù)法求出直線BA′的解析式,然后求出直線與x軸的交點(diǎn)坐標(biāo)即可得到P點(diǎn)坐標(biāo).

1)把A(1,3)代入y=k=1×3=3,

∴反比例函數(shù)解析式為y=;

B(3,m)代入y=3m=3,解得m=1,

B點(diǎn)坐標(biāo)為(3,1);

(2)作A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A′,連接BA′x軸于P點(diǎn),則A′(1,﹣3),

PA+PB=PA′+PB=BA′,

∴此時(shí)PA+PB的值最小,

設(shè)直線BA′的解析式為y=mx+n,

A′(1,﹣3),B(3,1)代入得,解得,

∴直線BA′的解析式為y=2x﹣5,

當(dāng)y=0時(shí),2x﹣5=0,解得x=,

P點(diǎn)坐標(biāo)為(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù):

1)第①行數(shù)按什么規(guī)律排列?

2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系;

3)設(shè)分別為第①②③行的2012個(gè)數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計(jì)圖表:

頻數(shù)分布表

身高分組

頻數(shù)

百分比

x155

5

10%

155≤x160

a

20%

160≤x165

15

30%

165≤x170

14

b

x≥170

6

12%

總計(jì)

100%

(1)填空:a=____b=____;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)該校九年級(jí)共有600名學(xué)生,估計(jì)身高不低于165cm的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墻上釘著用一根彩繩圍成的梯形形狀的飾物,如圖實(shí)線所示(單位:cm).小穎將梯形下底的釘子去掉,并將這條彩繩釘成一個(gè)長方形,如圖虛線所示.小穎所釘長方形的長、寬各為多少厘米?如果設(shè)長方形的長為xcm,根據(jù)題意,可得方程為( 。

A.2x+10)=10×4+6×2B.2x+10)=10×3+6×2

C.2x+1010×4+6×2D.2x+10)=10×2+6×2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O為數(shù)軸的原點(diǎn),點(diǎn)A、B在數(shù)軸上表示的數(shù)分別為ab,且滿足(a202+|b+10|0

1)寫出ab的值;

2PA右側(cè)數(shù)軸上的一點(diǎn),MAP的中點(diǎn).設(shè)P表示的數(shù)為x,求點(diǎn)M、B之間的距離;

3)若點(diǎn)C從原點(diǎn)出發(fā)以3個(gè)單位/秒的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)D從原點(diǎn)出發(fā)以2個(gè)單位/秒的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)?shù)竭_(dá)A點(diǎn)或B點(diǎn)后立即以原來的速度向相反的方向運(yùn)動(dòng),直到C點(diǎn)到達(dá)B點(diǎn)或D點(diǎn)到達(dá)A點(diǎn)時(shí)運(yùn)動(dòng)停止,求幾秒后C、D兩點(diǎn)相距5個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點(diǎn)F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

曉東通過觀察,實(shí)驗(yàn),提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.

1)下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整;

①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF______全等,判定它們?nèi)鹊囊罁?jù)是______

②由∠A=60°,BDCE是△ABC的兩條角平分線,可以得出∠EFB=______°

2)請(qǐng)直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一圓形零件的標(biāo)準(zhǔn)直徑是,超過規(guī)定直徑長度的數(shù)量(毫米)記作正數(shù),不足規(guī)定直徑長度的數(shù)量(毫米)記作負(fù)數(shù),檢驗(yàn)員某次抽查了零件樣品,檢查的結(jié)果如下:

序號(hào)

直徑長度/

1)試指出哪件樣品的大小最符合要求?

2)如果規(guī)定誤差的絕對(duì)值在之內(nèi)是正品.誤差的絕對(duì)值在之間是次品,誤差的絕對(duì)值超過的是廢品,那么上述五件樣品中,哪些是正品,哪些是次品,哪些是廢品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,ADBE是高,它們相交于點(diǎn)H,且AEBE

求證:AH2BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC與△CDE都是等腰直角三角形,∠ACB90°,∠DCE90°,連結(jié)BE,AD,相交于點(diǎn)F.求證:

1ADBE;

2ADBE

查看答案和解析>>

同步練習(xí)冊(cè)答案