【題目】如圖,已知ABC是等邊三角形, D、 E分別在邊AB、AC上,且AD=CE,CDBE相交于點(diǎn)O

1)如圖①,求∠BOD的度數(shù);

2)如圖②,如果點(diǎn)D、 E分別在邊ABCA的延長(zhǎng)線上時(shí),且AD=CE,求∠BOD的度數(shù).

【答案】1)∠BOD=60°;(2)∠BOD=120°.

【解析】

1)根據(jù)等邊三角形的性質(zhì)可得BC=AC, BCE=CAD =60°,然后利用SAS即可證出△BCE≌△CAD,從而得出∠CBE=ACD,然后利用等量代換和三角形外角的性質(zhì)即可求出∠BOD的度數(shù);

2)根據(jù)等邊三角形的性質(zhì)可得BC=AC, BCE=CAD =60°,然后利用SAS即可證出△BCE≌△CAD,從而得出∠CBE=ACD,然后利用三角形內(nèi)角和定理、等量代換和三角形外角的性質(zhì)即可求出∠BOD的度數(shù).

解:(1)∵△ABC是等邊三角形

BC=AC, BCE=CAD =60°

在△BCE與△CAD

∴△BCE≌△CAD

∴∠CBE=ACD

∵∠BCD+ACD=60°

∴∠BCD+CBE=60°

又∵∠BOD=BCD+CBE

∴∠BOD=60°

2)∵△ABC是等邊三角形

BC=AC,∠BCE=CAD =60°

在在△BCE與△CAD

∴△BCE≌△CAD

∴∠CBE=ACD

而∠CBE+BCA+E=180°,∠BCA=60°

∴∠ACD+60°+E=180°

∴∠ACD+E=120°

又∵∠BOD=ACD+E

∴∠BOD=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線平行于軸并交軸于,一塊三角板擺放其中,其邊與軸分別交于,兩點(diǎn),與直線分別交于,兩點(diǎn),

1)將三角板如圖1所示的位置擺放,請(qǐng)寫(xiě)出之間的數(shù)量關(guān)系,并說(shuō)明理由.

2)將三角板按如圖2所示的位置擺放,上一點(diǎn),,請(qǐng)寫(xiě)出之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1(x>0)的圖象上,點(diǎn)A′與點(diǎn)A關(guān)于點(diǎn)O對(duì)稱,一次函數(shù)y2=mx+n的圖象經(jīng)過(guò)點(diǎn)A′.

(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1、y2的圖象上.

①分別求函數(shù)y1、y2的表達(dá)式;

②直接寫(xiě)出使y1>y2>0成立的x的范圍;

(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,AA'B的面積為16,求k的值;

(3)設(shè)m=,如圖②,過(guò)點(diǎn)AADx軸,與函數(shù)y2的圖象相交于點(diǎn)D,以AD為一邊向右側(cè)作正方形ADEF,試說(shuō)明函數(shù)y2的圖象與線段EF的交點(diǎn)P一定在函數(shù)y1的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以M0,2)圓心,4為半徑的⊙Mx軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),連結(jié)BM并延長(zhǎng)交M于點(diǎn)P,連結(jié)PCx軸于點(diǎn)E

1)求DMP的度數(shù);

2)求BPE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、EBC上的點(diǎn),AD平分∠BAE,CA=CD

1)求證:∠CAE=∠B;

2)若∠B50°,∠C3DAB,求∠C的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD,∠A=∠ADC,E,F(xiàn)分別為AD,CD的中點(diǎn),連接BE,BF,延長(zhǎng)BECD的延長(zhǎng)線于點(diǎn)M.

(1)求證:四邊形ABCD為矩形;

(2)若MD=6,BC=12,求BF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B地在A地的正東方向,兩地相距28 km.AB兩地之間有一條東北走向的高速公路,且AB兩地到這條高速公路的距離相等.上午800測(cè)得一輛在高速公路上行駛的汽車位于A地的正南方向P處,至上午820,B地發(fā)現(xiàn)該車在它的西北方向Q處,該段高速公路限速為110 km/h.問(wèn):該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,連接BD,過(guò)點(diǎn)BBEBD于點(diǎn)BDA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)BBGCD于點(diǎn)G

1)如圖1,若∠C60°,∠BDC75°,BD6,求AE的長(zhǎng)度;

2)如圖2,點(diǎn)FAB邊上一點(diǎn),連接EF,過(guò)點(diǎn)FFHFE于點(diǎn)FGB的延長(zhǎng)線于點(diǎn)H,在△ABE的異側(cè),以BE為斜邊作RtBEQ,其中∠Q90°,若∠QEB=∠BDC,EFFH,求證:BF+BHBQ

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在利用構(gòu)造全等三角形來(lái)解決的問(wèn)題中,有一種典型的利用倍延中線的方法,例如:在ABC中,AB8,AC6,點(diǎn)DBC邊上的中點(diǎn),怎樣求AD的取值范圍呢?我們可以延長(zhǎng)AD到點(diǎn)E,使ADDE,然后連接BE(如圖①),這樣,在ADCEDB中,由于,∴△ADC≌△EDB,∴ACEB,接下來(lái),在ABE中通過(guò)AE的長(zhǎng)可求出AD的取值范圍.

請(qǐng)你回答:

1)在圖①中,中線AD的取值范圍是   

2)應(yīng)用上述方法,解決下面問(wèn)題

①如圖②,在ABC中,點(diǎn)DBC邊上的中點(diǎn),點(diǎn)EAB邊上的一點(diǎn),作DFDEAC邊于點(diǎn)F,連接EF,若BE4,CF2,請(qǐng)直接寫(xiě)出EF的取值范圍.

②如圖③,在四邊形ABCD中,∠BCD150°,∠ADC30°,點(diǎn)EAB中點(diǎn),點(diǎn)FDC上,且滿足BCCFDFAD,連接CEED,請(qǐng)判斷CEED的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案