【題目】(1)問(wèn)題探究:如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
①求證:△CDA≌△CEB;
②求∠AEB的度數(shù).
(2)問(wèn)題變式:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.
①請(qǐng)求出∠AEB的度數(shù)
②直接寫(xiě)出線段AE、CM、BE之間的數(shù)量關(guān)系,不必說(shuō)明理由.
【答案】(1)①證明見(jiàn)解析;②60°;(2)①90°;②AE= BE+2CM
【解析】
(1)①根據(jù)等邊三角形的性質(zhì)得到CA=CB=AB,CD=CE=DE,∠ACB=∠DCE=60°,利用SAS定理證明△CDA≌△CEB;
②根據(jù)全等三角形的性質(zhì)得到∠CEB=∠ADC=120°,結(jié)合圖形計(jì)算即可;
(2)①根據(jù)等腰直角三角形的性質(zhì)得到CA=CB,CD=CE,∠ACD=∠BCE,利用SAS定理證明△CDA≌△CEB,利用全等三角形的性質(zhì)計(jì)算即可;
②根據(jù)全等三角形的性質(zhì)得到BE=AD,根據(jù)直角三角形的性質(zhì)得到DE=2CM,結(jié)合圖形解答.
(1)①證明:∵△ACB和△DCE均為等邊三角形,
∴CA=CB=AB,CD=CE=DE,∠ACB=∠DCE=60°,
∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,
在△CDA和△CEB中,
,
∴△CDA≌△CEB;
②解:∵∠CDE=60°,
∴∠ADC=120°,
∵△CDA≌△CEB,
∴∠CEB=∠ADC=120°,
∴∠AEB=120°﹣60°=60°;
(2)①∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,
∴CA=CB,CD=CE,∠ACB﹣∠DCB=∠DCE﹣DCB,即∠ACD=∠BCE,
在△CDA和△CEB中,
,
∴△CDA≌△CEB,
∴∠CEB=∠ADC=135°,
∴∠AEB=135°﹣45°=90°;
②解:∵△CDA≌△CEB,
∴BE=AD,
∵CD=CE,CM⊥DE,
∴DM=ME,又∠DCE=90°,
∴DE=2CM,
∴AE=AD+DE=BE+2CM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】崇左市江州區(qū)太平鎮(zhèn)壺城社區(qū)調(diào)查居民雙休日的學(xué)習(xí)狀況,采取了下列調(diào)查方式;a:從崇左高中、太平鎮(zhèn)中、太平小學(xué)三所學(xué)校中選取200名教師;b:從不同住宅樓(即江灣花園與萬(wàn)鵬住宅樓)中隨機(jī)選取200名居民;c:選取所管轄區(qū)內(nèi)學(xué)校的200名在校學(xué)生.并將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計(jì)圖和部分?jǐn)?shù)據(jù)的頻數(shù)分布直方圖.以下結(jié)論:①上述調(diào)查方式最合理的是b;②在這次調(diào)查的200名教師中,在家學(xué)習(xí)的有60人;③估計(jì)該社區(qū)2000名居民中雙休日學(xué)習(xí)時(shí)間不少于4小時(shí)的人數(shù)是1180人;④小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時(shí),正好叔叔不學(xué)習(xí)的概率是0.1.其中正確的結(jié)論是( 。
A.①④
B.②④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:
(2)先化簡(jiǎn),再求值:3a-2(a-ab)+(b-2ab),其中a,b滿足|2a+b|+(2-b) =0
(3)解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)?jiān)跈M線上填寫(xiě)合適的內(nèi)容,完成下面的證明:
(1)如圖①如果AB∥CD,求證:∠APC=∠A+∠C.
證明:過(guò)P作PM∥AB,
所以∠A=∠APM,( )
因?yàn)?/span>PM∥AB,AB∥CD(已知)
所以PM∥CD( )
所以∠C= ( )
因?yàn)椤?/span>APC=∠APM+∠CPM
所以∠APC=∠A+∠C( )
(2)如圖②,AB∥CD,根據(jù)上面的推理方法,直接寫(xiě)出∠A+∠P+∠Q+∠C= .
(3)如圖③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,則m= (用x、y、z表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:已知兩直線,L1:y=k1x+b1,L2:y=k2x+b2,
若L1⊥L2,則有k1k2=﹣1,根據(jù)以上結(jié)論解答下列各題:
(1)已知直線y=2x+1與直線y=kx﹣1垂直,求k的值;
(2)若一條直線經(jīng)過(guò)A(2,3),且與y=﹣x+3垂直,求這條直線所對(duì)應(yīng)的一次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BC于D,E兩點(diǎn),垂足分別是M,N.
(1)若△ADE的周長(zhǎng)是10,求BC的長(zhǎng);
(2)若∠BAC=100°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一次函數(shù)y=kx+4(k≠0)的圖象稱為直線l.
(1)若直線l經(jīng)過(guò)點(diǎn)(2,0),直接寫(xiě)出關(guān)于x的不等式kx+4>0的解集;
(2)若直線l經(jīng)過(guò)點(diǎn)(3,﹣2),求這個(gè)函數(shù)的表達(dá)式;
(3)若將直線l向右平移2個(gè)單位長(zhǎng)度后經(jīng)過(guò)點(diǎn)(5,5),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線l1與l2相交于點(diǎn)O,且∠1+∠3=2(∠2+∠4),求下列角的度數(shù).(1)∠2+∠4;(2)∠1,∠2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com