【題目】如圖,已知⊙O的半徑為5,弦AB=8,CD=6,則圖中陰影部分面積為(

A. π–24 B. C. π–12 D. 9π–6

【答案】A

【解析】

過(guò)點(diǎn)OOEABE,作OFCDF,根據(jù)垂徑定理求出AECF,再利用勾股定理列式求出OE=OF,從而得到AE=OFOE=CF,然后利用“邊角邊”證明△AOE和△OCF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠AOE=OCF,再求出∠AOE+COF=90°,然后求出∠AOB+COD=180°,把弧CD旋轉(zhuǎn)到點(diǎn)D與點(diǎn)B重合,構(gòu)建直角三角形ABC;然后根據(jù)圓的面積公式和直角三角形的面積公式來(lái)求陰影部分的面積:陰影面積=半圓面積-直角三角形ABC的面積.

解:如圖1,過(guò)點(diǎn)OOEABE,作OFCDF,

由垂徑定理得,AE=AB=×8=4CF=CD=×6=3,

由勾股定理得,OE===3

OF===4,

AE=OFOE=CF,

在△AOE和△OCF中,,

∴△AOE≌△OCFSAS),∴∠AOE=OCF,

∵∠OCF+COF=90°,∴∠AOE+COF=90°,

∴∠AOB+COD=2(∠AOE+COF=2×90°=180°,

如圖2把弧CD旋轉(zhuǎn)到點(diǎn)D與點(diǎn)B重合.

∴△ABC為直角三角形,且AC為圓的直徑;

AB=8,CD=6,∴AC=10(勾股定理),

∴陰影部分的面積=S半圓SABC=π×52×6×8=π–24;

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商場(chǎng)預(yù)測(cè)某品牌運(yùn)動(dòng)服能夠暢銷,就用32000元購(gòu)進(jìn)了一批這種運(yùn)動(dòng)服,上市后很快脫銷,商場(chǎng)又用68000元購(gòu)進(jìn)第二批這種運(yùn)動(dòng)服,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.

1)該商場(chǎng)兩次共購(gòu)進(jìn)這種運(yùn)動(dòng)服多少套?

2)如果這兩批運(yùn)動(dòng)服每套的售價(jià)相同,且全部售完后總利潤(rùn)不低于20%,那么每套售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,在平行四邊形ABCD中,點(diǎn)E1E2AB三等分點(diǎn),點(diǎn)F1,F2CD三等分點(diǎn),E1F1,E2F2分別交AC于點(diǎn)G1,G2,求證:AG1G1G2G2C

(2)如圖2,由64個(gè)邊長(zhǎng)為1的小正方形組成的一個(gè)網(wǎng)格圖,線段MN的兩個(gè)端點(diǎn)在格點(diǎn)上,請(qǐng)用一把無(wú)刻度的尺子,畫出線段MN三等分點(diǎn)P,Q(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直徑為10的⊙A經(jīng)過(guò)點(diǎn)C(0,5)和點(diǎn)O (0,0),By軸右側(cè)⊙A優(yōu)弧上一點(diǎn),則∠OBC 的余弦值為 _________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),完成下列各題:

1)將函數(shù)關(guān)系式用配方法化為 y=a(x+h)2+k形式,并寫出它的頂點(diǎn)坐標(biāo)、對(duì)稱軸.

2)若它的圖象與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,該店采取了降價(jià)措施,在每件盈利不少于25元的前提下,經(jīng)過(guò)一段時(shí)間銷售,發(fā)現(xiàn)銷售單價(jià)每降低1元,平均每天可多售出2件.

1)若降價(jià)a元,則平均每天銷售數(shù)量為 件.(用含a的代數(shù)式表示)

2)當(dāng)每件商品降價(jià)多少元時(shí),該商店每天銷售利潤(rùn)為1200元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的頂點(diǎn)在O上,BDO的直徑,延長(zhǎng)CD、BA交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AHCE,垂足為點(diǎn)H,已知∠ADE=∠ACB

1)求證:AHO的切線;

2)若OB4,AC6,求sinACB的值;

3)若,求證:CDDH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)成為現(xiàn)代城市人的時(shí)尚,我市圖書(shū)館吸引了大批讀者,有關(guān)部門統(tǒng)計(jì)了2018年第四季度到市圖書(shū)館的讀者的職業(yè)分布情況,統(tǒng)計(jì)圖如圖.

1)在統(tǒng)計(jì)的這段時(shí)間內(nèi),共有 萬(wàn)人到圖書(shū)館閱讀.其中商人所占百分比是 ;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若今年2月到圖書(shū)館的讀者共28000名,估計(jì)其中約有多少名職工.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生為測(cè)量一棵大樹(shù)AH及其樹(shù)葉部分AB的高度,將測(cè)角儀放在F處測(cè)得大樹(shù)頂端A的仰角為30°,放在G處測(cè)得大樹(shù)頂端A的仰角為60°,樹(shù)葉部分下端B的仰角為45°,已知點(diǎn)F、G與大樹(shù)底部H共線,點(diǎn)F、G相距15米,測(cè)角儀高度為1.5.求該樹(shù)的高度AH和樹(shù)葉部分的高度AB

查看答案和解析>>

同步練習(xí)冊(cè)答案