【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)

【答案】:小水池的寬DE1.7米.

【解析】

過點BBFACF,BGCDG,根據(jù)三角函數(shù)和直角三角形的性質(zhì)解答即可.

過點BBFACF,BGCDG,

RtBAF中,∠BAF=65°,BF=ABsinBAF=0.8×0.9=0.72,

AF=ABcosBAF=0.8×0.4=0.32,

FC=AF+AC=4.32,

∵四邊形FCGB是矩形,

BG=FC=4.32,CG=BF=0.72,

∵∠BDG=45°,

∴∠BDG=GBD,

GD=GB=4.32,

CD=CG+GD=5.04,

RtACE中,∠AEC=50°,CE=≈3.33,

DE=CD-CE=5.04-3.33=1.711.7,

答:小水池的寬DE1.7米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某電腦經(jīng)銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.

1)每臺電腦機箱、液晶顯示器的進價各是多少元?

2)該經(jīng)銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:

(1)求直線所對應的函數(shù)關系式;

(2)已知小穎一家出服務區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當天幾點到達姥姥家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:三角形ABC,A=90°,AB=AC,DBC的中點.

(1)如圖,E、F分別是AB、AC上的點,BE=AF,求證:DEF為等腰直角三角形.

(2)E、F分別為AB,CA延長線上的點,仍有BE=AF,其他條件不變,那么,DEF是否仍為等腰直角三角形?畫出圖形,寫出結論不證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,QAP的中點,已知OQ長的最大值為,則k的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為4,對角線AC、BD交于點M

1)直接寫出AM=    ;

2P是射線AM上的一點,QAP的中點,設PQ=x

AP=     ,AQ=     ;

PQ為對角線作正方形,設所作正方形與△ABD公共部分的面積為S,用含x的代數(shù)式表示S,并寫出相應的x的取值范圍.(直接寫出,不需要寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點A坐標是,則經(jīng)過第2019次變換后所得的A點坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中小正方形的邊長為1,0,4).

(1) 在圖中標出點,使點到點,,,的距離都相等;

(2) 連接,,此時___________三角形;

(3) 四邊形的面積是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形ABC的底邊BC20cm,D是腰AB上一點,且CD16cm,BD12cm

1)請判斷CDAB的位置關系,并說明理由;

2)求該三角形的腰的長度.

查看答案和解析>>

同步練習冊答案