【題目】某學校舉辦了“創(chuàng)建文明城市知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9

1)求足球和籃球的單價各是多少元?

2)根據(jù)學校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1590元,學校最多可以購買多少個足球?

【答案】1)籃球56元/個,足球103元/個;(2)學校最多可以購買10個足球.

【解析】

1)設(shè)籃球元/個,足球元/個,根據(jù)題意可列一元一次方程,求解即可;
2)設(shè)買足球m個,則買藍球(20-m)個,根據(jù)購買足球和籃球的總費用不超過1590元建立不等式求出其解即可.

解:(1)設(shè)籃球元/個,足球元/個;

所以,解得;

所以籃球56元/個,足球103元/個.

答: 籃球56元/個,足球103元/個.

2)設(shè)足球個;則由題意得到不等式,解得,則最大整數(shù)為10.

答: 學校最多可以購買10個足球.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊三角形ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊三角形AB1C1,再以等邊三角形AB1C1B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊三角形AB2C2,再以等邊三角形AB2C2的邊B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊AB3C3,如此下去,這樣得到的第n個等邊三角形ABnCn的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館普通票價20/,暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/,每次憑卡不再收費

銀卡售價150/每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用不限次數(shù).設(shè)游泳x次時,所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式;

(2)在同一坐標系中,若三種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B、C的坐標;

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從點O正上方2米的點A處發(fā)出把球看成點,其運行的高度y(米)與運行的水平距離x(米)滿足關(guān)系式y=ax﹣62+h,已知球網(wǎng)與點O的水平距離為9米,高度為2.43米,球場的邊界距點O的水平距離為18米.

1)當h=2.6時,求yx的函數(shù)關(guān)系式.

2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.

3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個平行四邊形中,兩對平行于邊的直線將這個平行四邊形分為九個小平行四邊形,如果原來這個平行四邊形的面積為,而中間那個小平行四邊形(陰影部分)的面積為20平方厘米,則四邊形的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點 A﹣2,0),B2,0),C02,點 D,點E分別是 AC,BC的中點,將CDE繞點C逆時針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 ADBE

1如圖,若 α90°,當 AD′∥CE時,求α的大;

2如圖,若 90°α180°,當點 D落在線段 BE上時,求 sin∠CBE的值;

3若直線AD與直線BE相交于點P,求點P的橫坐標m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫出ABC關(guān)于點C成中心對稱的A1B1C;平移ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的A2B2C2;

(2)A1B1C和A2B2C2關(guān)于某一點成中心對稱,則對稱中心的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CDAB,垂足為D,點EBC上,EFAB,垂足為F

(1)CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=120°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,點A03),點B﹣3,0),點C1,0),點D0,1),連AB,AC,BD

1)求證:BDAC;

2)如圖②,將BOD繞著點O旋轉(zhuǎn),得到B′OD′,當點D′落在AC上時,求AB′的長;

3試直接寫出()中點B′的坐標.

查看答案和解析>>

同步練習冊答案