(2013•東營)如圖,AB為⊙O的直徑,點C為⊙O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若直線l與AB的延長線相交于點E,⊙O的半徑為3,并且∠CAB=30°,求CE的長.
分析:(1)連接OC,根據(jù)OA=OC,推出∠BAC=∠OCA,求出∠OCA=∠CAM,推出OC∥AM,求出OC⊥CD,根據(jù)切線的判定推出即可;
(2)根據(jù)OC=OA推出∠BAC=∠ACO,求出∠COE=2∠CAB=60°,在Rt△COE中,根據(jù)CE=OC•tan60°求出即可.
解答:解:(1)直線CD與⊙O相切.
理由如下:連接OC.
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BAC=∠CAM,
∴∠OCA=∠CAM,
∴OC∥AM,
∵CD⊥AM,
∴OC⊥CD,
∵OC為半徑,
∴直線CD與⊙O相切.

(2)∵OC=OA,
∴∠BAC=∠ACO,
∵∠CAB=30°,
∴∠COE=2∠CAB=60°,
∴在Rt△COE中,OC=3,CE=OC•tan60°=3
3
點評:本題考查了切線的判定,等腰三角形的性質(zhì)和判定,平行線性質(zhì),銳角三角函數(shù)的定義,三角形外角性質(zhì)的應用,主要考查學生運用定理進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,已知AB∥CD,AD和BC相交于點O,∠A=50°,∠AOB=105°,則∠C等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,正方形ABCD中,分別以B、D為圓心,以正方形的邊長a為半徑畫弧,形成樹葉形(陰影部分)圖案,則樹葉形圖案的周長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,圓柱形容器中,高為1.2m,底面周長為1m,在容器內(nèi)壁離容器底部0.3m的點B處有一蚊子,此時一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對的點A處,則壁虎捕捉蚊子的最短距離為
1.3
1.3
m(容器厚度忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,在平面直角坐標系中,一次函數(shù)y=nx+2(n≠0)的圖象與反比例函數(shù)y=
m
x
(m≠0)
在第一象限內(nèi)的圖象交于點A,與x軸交于點B,線段OA=5,C為x軸正半軸上一點,且sin∠AOC=
4
5

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

同步練習冊答案