【題目】如圖,AB是⊙O的直徑,BCAB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦ADOC,弦DFAB于點(diǎn)G

1)求證:點(diǎn)E是弧BD的中點(diǎn);

2)求證:CD是⊙O的切線;

3)若tanADG,⊙O的半徑為5,求DF的長(zhǎng).

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3

【解析】

1)連接OD,如圖,根據(jù)平行線的性質(zhì)得∠BOC=∠A,∠DOC=∠ODA,由∠A=∠ODA,得出∠BOC=∠DOC,然后根據(jù)圓心角、弧、弦的關(guān)系即可得出結(jié)論;

2)先證明OCD≌△OCB得到∠ODC=∠OBC90°,然后根據(jù)切線的判定方法得到結(jié)論;

3)在RtADG中用勾股定理得到OD2DG2+OG2進(jìn)行求解.

1)證明:連接OD,如圖,

ADOC

∴∠BOC=∠A,∠DOC=∠ODA,

OAOD

∴∠A=∠ODA,

∴∠BOC=∠DOC

,

即點(diǎn)E是弧BD的中點(diǎn);

2)證明:在OCDOCB中,

∴△OCD≌△OCBSAS),

∴∠ODC=∠OBC90°,

ODCD,

CD是⊙O的切線;

3)解:在ADG中,tanADG,

設(shè)DG4x,AG3x;

又∵⊙O的半徑為5

OG53x;

OD2DG2+OG2,

52=(4x2+53x2

x1,x20;(舍去)

DF2DG2×4x8x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

已知平面上兩點(diǎn),則所有符合的點(diǎn)會(huì)組成一個(gè)圓.這個(gè)結(jié)論最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),稱(chēng)阿氏圓.

阿氏圓基本解法:構(gòu)造三角形相似.

(問(wèn)題)如圖1,在平面直角坐標(biāo)中,在軸,軸上分別有點(diǎn),點(diǎn)是平面內(nèi)一動(dòng)點(diǎn),且,設(shè),求的最小值.

阿氏圓的關(guān)鍵解題步驟:

第一步:如圖1,在上取點(diǎn),使得

第二步:證明;第三步:連接,此時(shí)即為所求的最小值.

下面是該題的解答過(guò)程(部分)

解:在上取點(diǎn),使得,

.

任務(wù):

將以上解答過(guò)程補(bǔ)充完整.

如圖2,在中,內(nèi)一動(dòng)點(diǎn),滿(mǎn)足,利用中的結(jié)論,請(qǐng)直接寫(xiě)出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面坐標(biāo)系中,正方形的位置如圖所示,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,延長(zhǎng)軸于點(diǎn),作正方形,正方形的面積為______,延長(zhǎng)軸于點(diǎn),作正方形,……按這樣的規(guī)律進(jìn)行下去,正方形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),對(duì)稱(chēng)軸為直線,點(diǎn)的坐標(biāo)為

1)求該拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

2)點(diǎn)為拋物線上一點(diǎn)(不與點(diǎn)重合),聯(lián)結(jié).當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)在(2)的條件下,將拋物線沿平行于軸的方向向下平移,平移后的拋物線的頂點(diǎn)為點(diǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ABAC,∠BAC60°,AD為的直徑,BEACADP,BE的延長(zhǎng)線交⊙O于點(diǎn)F,連結(jié)AF,CF,ADBCG,在不添加其他輔助線的情況下,圖中除ABAC外,相等的線段共有(  )對(duì).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形ABCD中,∠ADC90°,ADBC,點(diǎn)EBC上,點(diǎn)FAC上,∠DFC=∠AEB

1)求證:△ADF∽△CAE;

2)當(dāng)AD8,DC6,點(diǎn)E、F分別是BC、AC的中點(diǎn)時(shí),求BC的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車(chē)到黑龍灘(用C表示)開(kāi)展社會(huì)實(shí)踐活動(dòng),車(chē)到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導(dǎo)航顯示車(chē)輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+1x軸,y軸分別交于AB兩點(diǎn),拋物線yax2+bx+c過(guò)點(diǎn)B,并且頂點(diǎn)D的坐標(biāo)為(﹣2,﹣1).

1)求該拋物線的解析式;

2)若拋物線與直線AB的另一個(gè)交點(diǎn)為F,點(diǎn)C是線段BF的中點(diǎn),過(guò)點(diǎn)CBF的垂線交拋物線于點(diǎn)P,Q,求線段PQ的長(zhǎng)度;

3)在(2)的條件下,點(diǎn)M是直線AB上一點(diǎn),點(diǎn)N是線段PQ的中點(diǎn),若PQ2MN,直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛(ài)。如圖,四邊形是某速滑場(chǎng)館建造的滑臺(tái),已知,滑臺(tái)的高米,且坡面的坡度為.后來(lái)為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.

1)求新坡面的坡角及的長(zhǎng);

2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門(mén)規(guī)定,坡面底部至少距護(hù)墻米。請(qǐng)問(wèn)新的設(shè)計(jì)方案能否通過(guò),試說(shuō)明理由(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案