在直角坐標(biāo)平面中,已知點(diǎn)A(10,0)和點(diǎn)D(8,0).點(diǎn)C、B在以O(shè)A為直徑的⊙M上,且四邊形OCBD為平行四邊形.
(1)求C點(diǎn)坐標(biāo);
(2)求過(guò)O、C、B三點(diǎn)的拋物線解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)判斷:(2)中拋物線的頂點(diǎn)與⊙M的位置關(guān)系,說(shuō)明理由.

解:(1)如圖,作MN⊥BC于點(diǎn)N,連接MC,
∵A(10,0)和點(diǎn)D(8,0).
∴點(diǎn)M(5,0),
∵點(diǎn)C、B在以O(shè)A為直徑的⊙M上,且四邊形OCBD為平行四邊形,
∴⊙M的半徑為5,BC=OD=8,
∴在Rt△MNC中,MC=5,NC=BC=4,
∴MN=3,
∴點(diǎn)C的坐標(biāo)為(1,3);

(2)∵點(diǎn)C的坐標(biāo)為(1,3),
∴點(diǎn)B的坐標(biāo)為(9,3),
設(shè)過(guò)O、C、B三點(diǎn)的拋物線解析式為y=ax2+bx,

解得:
∴解析式為:y=-x2+x,
∴y=-x2+x=-(x-5)2+
∴對(duì)稱軸為x=5,頂點(diǎn)坐標(biāo)為(5,);

(3)∵頂點(diǎn)坐標(biāo)為(5,),點(diǎn)M的坐標(biāo)為(5,0),
∴頂點(diǎn)到點(diǎn)M的距離為,
>5
∴拋物線的頂點(diǎn)在⊙M外.
分析:(1)作MN⊥BC于點(diǎn)N,連接MC,利用垂徑定理求得線段MN后即可確定點(diǎn)C的坐標(biāo);
(2)用同樣的方法確定點(diǎn)D的坐標(biāo)后利用待定系數(shù)法確定二次函數(shù)的解析式,然后配方后即可確定拋物線的頂點(diǎn)坐標(biāo)及對(duì)稱軸;
(3)根據(jù)拋物線的頂點(diǎn)坐標(biāo)和點(diǎn)M的坐標(biāo)確定兩點(diǎn)之間的距離,然后根據(jù)半徑與兩點(diǎn)之間的線段的大小關(guān)系即可確定頂點(diǎn)與圓的位置關(guān)系.
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合知識(shí),還考查了點(diǎn)與圓的位置關(guān)系,本題難度不大,但綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面中,已知點(diǎn)P(a,b)(|a|≠|(zhì)b|),設(shè)點(diǎn)P關(guān)于直線y=x的對(duì)稱點(diǎn)為Q,點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為R,則△PQR的形狀是(  )
A、銳角三角形B、直角三角形C、鈍角三角形D、不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)在直角坐標(biāo)平面中,已知點(diǎn)A(10,0)和點(diǎn)D(8,0).點(diǎn)C、B在以O(shè)A為直徑的⊙M上,且四邊形OCBD為平行四邊形.
(1)求C點(diǎn)坐標(biāo);
(2)求過(guò)O、C、B三點(diǎn)的拋物線解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)判斷:(2)中拋物線的頂點(diǎn)與⊙M的位置關(guān)系,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年上海市長(zhǎng)寧區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

在直角坐標(biāo)平面中,已知點(diǎn)A(10,0)和點(diǎn)D(8,0).點(diǎn)C、B在以O(shè)A為直徑的⊙M上,且四邊形OCBD為平行四邊形.
(1)求C點(diǎn)坐標(biāo);
(2)求過(guò)O、C、B三點(diǎn)的拋物線解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)判斷:(2)中拋物線的頂點(diǎn)與⊙M的位置關(guān)系,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)平面中,已知點(diǎn)P(a,b)(|a|≠|(zhì)b|),設(shè)點(diǎn)P關(guān)于直線y=x的對(duì)稱點(diǎn)為Q,點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為R,則△PQR的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案