8、如圖,在△ABC中,AB=AC,E、F分別是AB、AC上的點(diǎn),且AE=AF,BF、CE相交于點(diǎn)O,連接AO并延長(zhǎng)交BC于點(diǎn)D,則圖中全等三角形有( 。
分析:首先要證明△BCF≌△CBE(SAS),得出BF=CE,再證明△ABF≌△ACE(SAS),得出∠BAD=∠CAD,可以證明AD⊥BC,所以△ABD≌△ACD(HL),△AOE≌△AOF(SAS),△AOB≌△AOC(SAS),得出OE=OF,BO=CO,所以△BOE≌COF(SSS),△BOD≌△COD(HL),所以一共七對(duì).
解答:解:∵AB=AC,AE=AF
∴∠ABC=∠ACB,BE=CF
∵BC是公共邊
∴△BCF≌CBE
∴BF=CE
∵AE=AF,AB=AC
∴△ABF≌ACF
∴∠BAD=∠CAD
∴AD⊥BC,BD=CD
∴△ABD≌△ACD(HL)
∵∠BAD=∠CAD.AE=AF,AD=AD
∴△AOE≌△AOF
∴OE=OF
∴BO=CO,BE=CF
∴△BOE≌△COF
∵BO=CO,BD=CD,OD是公共邊
∴△BOD≌△COD
∵AB=AC,AO=AO,∠BAO=∠CAO,
∴△AOB≌△AOC
∴一共七對(duì)
故選D.
點(diǎn)評(píng):本題考查了三角形全等的判定與性質(zhì),關(guān)鍵是找出第一對(duì)全等三角形,再利用性質(zhì)證明另一對(duì)三角形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案