【題目】如圖,點P的邊OB上的一點。

過點POA的垂線,垂足為H;

過點POB的垂線,交OA于點C;

線段PH的長度是點P   的距離,_____   是點C到直線OB的距離。因為直線外一點到直線上各點連接的所有線段中,垂線段最短,所以線段PCPH、OC這三條線段大小關系是       。(用“<”號連接)

【答案】1作圖見解析;(2作圖見解析;(3直線OA(或點H);線段CP的長度;PH<PC<OC

【解析】1)過點P∠OPC=90°即可;

2)過點P∠PHO=90°即可;

3)利用點到直線的距離可以判斷線段PH的長度是點POA的距離,PC是點C到直線OB的距離,線段PC、PH、OC這三條線段大小關系是PHPCOC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度為 米.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.例如:若數(shù)軸上數(shù)2表示的點與數(shù)﹣2表示的點重合,則數(shù)軸上數(shù)﹣4表示的點與數(shù)4表示的點重合,根據(jù)你對例題的理解,解答下列問題:

若數(shù)軸上數(shù)﹣3表示的點與數(shù)1表示的點重合.(根據(jù)此情境解決下列問題)

①則數(shù)軸上數(shù)3表示的點與數(shù)_______________表示的點重合.

②若點A到原點的距離是5個單位長度,并且A、B兩點經(jīng)折疊后重合,則B點表示的數(shù)是_________.

③若數(shù)軸上M、N兩點之間的距離為2010,并且M、N兩點經(jīng)折疊后重合,

如果M點表示的數(shù)比N點表示的數(shù)大,則M點表示的數(shù)是________.則N點

表示的數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)據(jù)中,能構成三角形的是( 。
A.1cm、2cm、3cm
B.2cm、3cm、4cm
C.4cm、9cm、4cm
D.2cm、1cm、4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形兩邊長分別是3和6,則該三角形的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某無人機于空中處探測到目標的俯角分別是,此時無人機的飛行高度,隨后無人機從處繼續(xù)水平飛行m到達處.

(1)之間的距離

(2)求從無人機上看目標的俯角的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.以輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時到達海岸線?

(2)若輪船不改變航向,該輪船能否停靠在碼頭?請說明理由.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列的解答過程,然后作答:

形如的化簡,只要我們找到兩個數(shù)a、b使a+b=m,ab=n,這樣()2+()2=m·=n,那么便有==± (a>b) .例如:化簡解:首先把化為,這里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7·=,

===2+

由上述例題的方法化簡:(1) (2) (3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正n邊形的每個外角均為40°,則n=( 。
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習冊答案