【題目】如圖,已知∠1+∠4﹦180°,∠2﹦∠E,則EF∥BC,下面是王華同學(xué)的推導(dǎo)過程﹐請你幫他在括號內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.
證明:
∵∠1+∠4﹦180°( ),
∠3﹦∠4 ( ),
∴∠1﹢ ﹦180°.
∴AE∥CG ( )
∴∠E﹦∠CGF( ).
∵∠2﹦∠E(已知)
∴ ∠2﹦∠CGF( ).
∴ BC∥EF( ).
【答案】對頂角相等;∠3;同旁內(nèi)角互補,兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯角相等,兩直線平行
【解析】
根據(jù)對頂角相等,得出∠3=∠4,根據(jù)等量代換可知∠1+∠3=180°,根據(jù)同旁內(nèi)角互補,兩直線平行,得出AE∥CG,再由兩直線平行,同位角相等,得出∠E=∠CGF,已知∠2=∠E,由等量代換可知∠2=∠CGF,再根據(jù)內(nèi)錯角相等,兩直線平行,即可得出EF∥BC.
證明:∵∠1+∠4﹦180(已知),
∠3﹦∠4 ( 對頂角相等 ),
∴∠1﹢∠3﹦180°.
∴AE∥CG ( 同旁內(nèi)角互補,兩直線平行)
∴∠E﹦∠CGF(兩直線平行,同位角相等 ).
∵∠2﹦∠E(已知)
∴ ∠2﹦∠CGF( 等量代換 ).
∴ BC∥EF(內(nèi)錯角相等,兩直線平行).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于點F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線;
(3)求證:∠EDF=∠DAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(a≠0)的圖象在第二象限交于點A(m,2).與x軸交于點C(﹣1,0).過點A作AB⊥x軸于點B,△ABC的面積是3.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若直線AC與y軸交于點D,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ABC=35°,E是BC邊上一點且AE=CE,D是
BC邊上的中點,連接AD,AE.
(1)求∠DAE的度數(shù);
(2)若BD上存在點F,且∠AFE=∠AEF,求證:BF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=100°,OA=12,C是OB的中點,CD⊥OB交于點D,以O(shè)C為半徑的交OA于點E,則圖中陰影部分的面積是( 。
A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°,點P是射線B上一動點(與點A不重合),CM,CN分別平分∠ACP和∠PCD,分別交射線AB于點M,N.
(1)求∠MCN的度數(shù).
(2)當(dāng)點P運動到某處時,∠AMC=∠ACN,求此時∠ACM的度數(shù).
(3)在點P運動的過程中,∠APC與∠ANC的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為早日實現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個小球由靜止開始沿一個斜坡向下滾動,其速度每秒增加2m/s.
(1)求小球速度v(單位:m/s)關(guān)于時間t(單位:s)的函數(shù)解析式,它是一次函數(shù)嗎?
(2)求第3.5s時小球的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,請用直尺和圓規(guī)依次完成下列操作.
(1)在線段 AC 上找一點 M,使點 M 到 AB 和 BC 的距離相等;
(2)在射線 BM 上找一點 N,使 NB=NC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com