【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達式;

(2)過點AAC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點PAC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;

(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.

【答案】(1)y=﹣x2+4x+5;(2)點P()時,S四邊形APCD最大=;(3)當M點的坐標為(1,8)時,N點坐標為(2,13),當M點的坐標為(3,8)時,N點坐標為(2,3).

【解析】

試題(1)設出拋物線解析式,用待定系數(shù)法求解即可;(2)先求出直線AB解析式,設出點P坐標(x﹣x2+4x+5),建立函數(shù)關系式S四邊形APCD=﹣2x2+10x,根據(jù)二次函數(shù)求出極值;(3)先判斷出△HMN≌△AOE,求出M點的橫坐標,從而求出點M,N的坐標.

試題解析:(1)設拋物線解析式為y=a+9,拋物線與y軸交于點A0,5), ∴4a+9=5,

∴a=﹣1, y=﹣+9=-+4x+5

2)當y=0時,-+4x+5=0∴x1=﹣1,x2=5,∴E﹣10),B5,0),

設直線AB的解析式為y=mx+n,∵A05),B50),∴m=﹣1n=5,

直線AB的解析式為y=﹣x+5;設Px,+4x+5), ∴Dx,﹣x+5),

∴PD=-+4x+5+x﹣5=-+5x, ∵AC=4, ∴S四邊形APCD=×AC×PD=2-+5x=-2+10x

x=時, ∴S四邊形APCD最大=,

3)如圖,

MMH垂直于對稱軸,垂足為H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,

∴M點的橫坐標為x=3x=1,當x=1時,M點縱坐標為8,當x=3時,M點縱坐標為8,

∴M點的坐標為M118)或M23,8),∵A05),E/span>﹣1,0), 直線AE解析式為y=5x+5

∵MN∥AE,∴MN的解析式為y=5x+b,N在拋物線對稱軸x=2上,∴N2,10+b),

∵AE2=OA2+0E2=26 ∵MN=AE ∴MN2=AE2, ∴MN2=2﹣12+[8﹣10+b]2=1+b+22

∵M點的坐標為M11,8)或M23,8), M1M2關于拋物線對稱軸x=2對稱,

N在拋物線對稱軸上, ∴M1N=M2N, ∴1+b+22=26, ∴b=3,或b=﹣7

∴10+b=1310+b=3 ∴M點的坐標為(1,8)時,N點坐標為(2,13),

M點的坐標為(3,8)時,N點坐標為(2,3),

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A(﹣1,4),B(﹣3,3),C(﹣2,1

1)已知ABCABC關于x軸對稱,畫出ABC,并寫出以下各點坐標:A   B   ;C   

2)在y軸上作出點P(在圖中顯示作圖過程),使得PA+PC的值最小,并寫出點P的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P是線段MN上一動點,分別以PMPN為一邊,在MN的同側作△APM,△BPN,并連接BM,AN

(Ⅰ)如圖1,當PMAP,PNBP且∠APM=∠BPN90°時,試猜想BM,AN之間的數(shù)量關系與位置關系,并證明你的猜想;

(Ⅱ)如圖2,當△APM,△BPN都是等邊三角形時,(Ⅰ)中BM,AN之間的數(shù)量關系是否仍然成立?若成立,請證明你的結論;若不成立,試說明理由.

(Ⅲ)在(Ⅱ)的條件下,連接AB得到圖3,當PN2PM時,求∠PAB度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB、AC邊上的高CE、BD相交于點P,圖中與BPE相似的三角形共有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一筆直的公路連接M,N兩地,甲車從M地駛往N地,速度為60km/h,乙車從M地駛往N地,速度為40km/h,丙車從N地駛往M地,速度為80km/h,三輛車同時出發(fā),先到目的地的車停止不動.途中甲車發(fā)生故障,于是停車修理了2.5h,修好后立即按原速駛往N地.設甲車行駛的時間為th),甲、丙兩車之間的距離為S1km).甲、乙兩車離M地的距離為S2km),S1t之間的關系如圖1所示,S2t之間的關系如圖2所示.根據(jù)題中的信息回答下列問題:

1)①圖1中點C的實際意義是   ;

②點B的橫坐標是   ;點E的橫坐標是   ;點Q的坐標是   ;

2)請求出圖2中線段QR所表示的S2t之間的關系式;

3)當甲、乙兩車距70km時,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材呈現(xiàn):如圖是華師版八年級上冊數(shù)學教材第96頁的部分內(nèi)容.

請根據(jù)教材中的分析,結合圖①,寫出角平分線的性質定理完整的證明過程.

定理應用:

如圖②,在四邊形ABCD中,∠B=∠C,點E在邊BC上,AE平分∠BADDE平分∠ADC

1)求證:BECE

2)若四邊形ABCD的周長為24,BE2,面積為30,則△ABE的邊AB的高的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=x2﹣2x﹣3x軸交于A、B兩點,與y軸交于點C,該拋物線的頂點為M.

(1)求點A、B、C的坐標.

(2)求直線BM的函數(shù)解析式.

(3)試說明:∠CBM+∠CMB=90°.

(4)在拋物線上是否存在點P,使直線CP△BCM分成面積相等的兩部分?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:

(1)補全條形統(tǒng)計圖;

(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)估計該單位750名職工共捐書多少本?

查看答案和解析>>

同步練習冊答案