【題目】已知拋物線y=﹣x2﹣2x+3.問:
(1)該拋物線的頂點(diǎn)坐標(biāo)是 ;
(2)該函數(shù)與x軸的交點(diǎn)坐標(biāo)是 , ,并在網(wǎng)格中畫出該函數(shù)的圖象;
(3)x取什么值時,拋物線在x軸上方? .
(4)已知y=t,t取什么值時與拋物線y=﹣x2﹣2x+3有兩個交點(diǎn)?
【答案】(1)頂點(diǎn)坐標(biāo)為(﹣1,4);(2)拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣3,0),(1,0);(3)當(dāng)﹣3<x<1時,y>0,拋物線在x軸上方;(4)當(dāng)t<4時,直線y=t與拋物線y=﹣x2﹣2x+3有兩個交點(diǎn).
【解析】
(1)通過配方化為頂點(diǎn)式即可求解;
(2)令y=0,解方程﹣x2﹣2x+3=0即可,用描點(diǎn)發(fā)可畫出函數(shù)圖像;
(3)結(jié)合圖象寫出拋物線在x軸上方對應(yīng)的自變量的范圍即可;
(4)結(jié)合圖象,當(dāng)t>4時,y=t與拋物線無交點(diǎn);當(dāng)t=4時,y=t與拋物線有一個交點(diǎn);當(dāng)t<4時,y=t與拋物線有兩個交點(diǎn).
(1)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴頂點(diǎn)坐標(biāo)為(﹣1,4);
(2)當(dāng)y=0時,﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,
∴拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣3,0),(1,0);
如圖,
(3)當(dāng)﹣3<x<1時,y>0,即拋物線在x軸上方;
(4)當(dāng)t<4時,直線y=t與拋物線y=﹣x2﹣2x+3有兩個交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具批發(fā)商銷售每件進(jìn)價為40元的玩具,市場調(diào)查發(fā)現(xiàn),若以每件50元的價格銷售,平均每天銷售90件,單價每提高1元,平均每天就少銷售3件.
(1)平均每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式為 ;
(2)求該批發(fā)商平均每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式;
(3)物價部門規(guī)定每件售價不得高于55元,當(dāng)每件玩具的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點(diǎn)D、E,得到DE弧.
(1)求證:AB為⊙C的切線.
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個動點(diǎn),點(diǎn)N是拋物線上一動點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0)、點(diǎn)B,與y軸交于點(diǎn)C,拋物線的對稱軸是直線x=1,連接BC、AC.
(1)求S△ABC(用含有a的代數(shù)式來表示);
(2)若S△ABC=6,求拋物線的解析式;
(3)在(2)的條件下,當(dāng)﹣1≤x≤m+1時,y的最大值是2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=3,AD=5,AE平分∠BAD,交BC于F,交DC延長線于E,則的值為( )
A.B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°,過點(diǎn)B作BE⊥BD,BE=BD,連接EC.
(1)求∠CAD+∠CBD的度數(shù);
(2)若,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊上的中線,點(diǎn)關(guān)于直線的對稱點(diǎn)是點(diǎn),連接并延長到點(diǎn),使,連接,.若,點(diǎn)到的距離,則四邊形的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在函數(shù)y=(x>0)的圖象上從左向右運(yùn)動,PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點(diǎn)A,AB∥x軸交PO的延長線于點(diǎn)B,則△PAB的面積( 。
A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com