精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點為D,其圖象與x軸的交點A,B的橫坐標分別為-1,3,與y軸負半軸交于點C.下面五個結論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當a=
12
時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有三個.那么,其中正確的結論是
 
分析:先根據(jù)圖象與x軸的交點A,B的橫坐標分別為-1,3確定出AB的長及對稱軸,再由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解答:解:①∵圖象與x軸的交點A,B的橫坐標分別為-1,3,
∴AB=4,
∴對稱軸x=-
b
2a
=1,
即2a+b=0;
②由拋物線的開口方向向上可推出a>0,而-
b
2a
>0
∴b<0,
∵對稱軸x=1,
∴當x=1時,y<0,
∴a+b+c<0;

③∵圖象與x軸的交點A,B的橫坐標分別為-1,3,
∴當x=2時y<0,
∴4a+2b+c<0,
又∵b<0,
∴4a+b+c<0;

④要使△ABD為等腰直角三角形,必須保證D到x軸的距離等于AB長的一半;
D到x軸的距離就是當x=1時y的值的絕對值.精英家教網(wǎng)
當x=1時,y=a+b+c,
即|a+b+c|=2,
∵當x=1時y<0,
∴a+b+c=-2
又∵圖象與x軸的交點A,B的橫坐標分別為-1,3,
∴當x=-1時y=0即a-b+c=0;
x=3時y=0.
∴9a+3b+c=0,
解這三個方程可得:b=-1,a=
1
2
,c=-
3
2
;

⑤要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,
當AB=BC=4時,
∵AO=1,△BOC為直角三角形,
又∵OC的長即為|c|,
∴c2=16-9=7,
∵由拋物線與y軸的交點在y軸的負半軸上,
∴c=-
7
,
與2a+b=0、a-b+c=0聯(lián)立組成解方程組,解得a=
7
3

同理當AB=AC=4時
∵AO=1,△AOC為直角三角形,
又∵OC的長即為|c|,
∴c2=16-1=15,
∵由拋物線與y軸的交點在y軸的負半軸上,
∴c=-
15

與2a+b=0、a-b+c=0聯(lián)立組成解方程組,解得a=
15
3
;
同理當AC=BC時
在△AOC中,AC2=1+c2,
在△BOC中BC2=c2+9,
∵AC=BC,
∴1+c2=c2+9,此方程無解.
經(jīng)解方程組可知只有兩個a值滿足條件.
故正確的有①④.
點評:二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:
(1)a由拋物線開口方向確定:開口方向向上,則a>0;否則a<0;
(2)b由對稱軸和a的符號確定:由對稱軸公式x=-
b
2a
判斷符號;
(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>0;否則c<0;
(4)b2-4ac由拋物線與x軸交點的個數(shù)確定:
①2個交點,b2-4ac>0;
②1個交點,b2-4ac=0;
③沒有交點,b2-4ac<0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點D(0,
7
9
3
),且頂點C的橫坐標為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標;
(3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)圖象的頂點為坐標原點O,且經(jīng)過點A(3,3),一次函數(shù)的圖象經(jīng)過點A和點B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關系(即前t個月的利潤總和s與t之間的關系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關系式;
(2)求截止到幾月末公司累積利潤可達30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習冊答案