(2011•同安區(qū)質(zhì)檢)如圖,點(diǎn)A、B為地球儀的南、北極點(diǎn),直線AB與放置地球儀的平面交于點(diǎn)D,所成的角度約為67°,半徑OC所在的直線與放置平面垂直,垂足為點(diǎn)E.DE=15cm,AD=14cm.求半徑OA的長(zhǎng).(精確到0.1cm)
參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.

【答案】分析:在Rt△ODE中,DE=15,∠ODE=67°,根據(jù)∠ODE的余弦值,即可求得OD長(zhǎng),減去AD即為OA.
解答:解:在Rt△ODE中,DE=15,∠ODE=67°,
∵cos∠ODE=,
∴OD≈≈38.46(cm),
∴OA=OD-AD≈38.46-14≈24.5(cm).
答:半徑OA的長(zhǎng)約為24.5cm.
點(diǎn)評(píng):本題首先把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,主要利用了三角函數(shù)中余弦定義來(lái)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•同安區(qū)質(zhì)檢)已知a是關(guān)于x的方程x2-bx-a=0的根,若a≠0,則a-b=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•同安區(qū)質(zhì)檢)(1)計(jì)算:|-3 |-
4
-(
1
2
)-1

(2)解不等式組
1
2
x≤1
2-x<3

(3)先化簡(jiǎn),再求值
x
x2-1
x2+x
x2
,其中x=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長(zhǎng)是2,E是AB的中點(diǎn),延長(zhǎng)BC到點(diǎn)F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•同安區(qū)質(zhì)檢)已知:如圖,A(a,m),B(2a,n)是反比例函數(shù)y=
k
x
(k>0)
圖象上的兩點(diǎn),分別過(guò)A,B兩點(diǎn)作x軸的垂線,垂足分別為C、D,連接OA,OB.
(1)求證:S△AOC=S△OBD
(2)若A,B兩點(diǎn)又在一次函數(shù)y=-
4
3
x+b
的圖象上,且S△OAB=8,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•同安區(qū)質(zhì)檢)我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.
(1)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(4,0),B(0,3),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB;
(2)如圖2,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DBE,連接AD,DC,∠DCB=30°.求證:四邊形ABCD是以DC、BC為勾股邊的勾股四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案