【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點(diǎn)A,分別過正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長為__.
【答案】13
【解析】試題分析:根據(jù)正方形的性質(zhì)、直角三角形兩個銳角互余以及等量代換可以證得△AFB≌△AED;然后由全等三角形的對應(yīng)邊相等推知AF=DE、BF=AE,所以EF=AF+AE=13.
解:∵ABCD是正方形(已知),
∴AB=AD,∠ABC=∠BAD=90°;
又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
∴∠FBA=∠EAD(等量代換);
∵BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,
∴在Rt△AFB和Rt△AED中,
∵,
∴△AFB≌△AED(AAS),
∴AF=DE=8,BF=AE=5(全等三角形的對應(yīng)邊相等),
∴EF=AF+AE=DE+BF=8+5=13.
故答案為:13.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
【答案】(1)原式= 2a2+b2=2+2=4;(2)原式=4.
【解析】試題分析:(1)利用完全平方公式展開,化簡,代入求值. (2) 利用完全平方公式展開,化簡,整體代入求值.
解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.
當(dāng)a=-1,b=時,原式=2+2=4.
(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.
【題型】解答題
【結(jié)束】
22
【題目】已知化簡(x2+px+8)(x2-3x+q)的結(jié)果中不含x2項(xiàng)和x3項(xiàng).
(1)求p,q的值.
(2)x2-2px+3q是否是完全平方式?如果是,請將其分解因式;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6 cm,BC=8 cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點(diǎn)O,點(diǎn)D在CA的延長線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=kx,是否存在實(shí)數(shù)k,使得代數(shù)式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化簡為x4?若能,請求出所有滿足條件的k的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE,△BCD均為等邊三角形,點(diǎn)A,B,C在同一條直線上,連接AD,EC,AD與EB相交于點(diǎn)M,BD與EC相交于點(diǎn)N,下列說法正確的有:___________
①AD=EC;②BM=BN;③MN∥AC;④EM=MB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=24cm,P、Q、M、N分別從A、B、C、D出發(fā),沿AD、BC、CB、DA方向在矩形的邊上同時運(yùn)動,當(dāng)有一個點(diǎn)先到達(dá)所在運(yùn)動邊的另一個端點(diǎn)時,運(yùn)動即停止、已知在相同時間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm,
(1)當(dāng)x為何值時,點(diǎn)P、N重合;
(2)當(dāng)x為何值時,以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CP是AB的中垂線且交AB于P,其中AP=2CP.甲、乙兩人想在AB上取兩點(diǎn)D、E,使得AD=DC=CE=EB,其作法如下:
甲:作∠ACP、∠BCP之角平分線,分別交AB于D、E,則D、E即為所求;
乙:作AC、BC之中垂線,分別交AB于D、E,則D、E即為所求.
對于甲、乙兩人的作法,下列判斷何者正確( 。
A. 兩人都正確 B. 兩人都錯誤 C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com