分析 (1)根據(jù)二次根式的性質(zhì)得到關(guān)于a,b的方程,求得a,b,即可得到結(jié)論;
(2)作BM⊥y軸于M,BN⊥x軸于N點,很容易知道△ABM≌△CBN.而B點坐標是(2,2),那么就有一組對應(yīng)邊相等,故全等,可得BA=BC.
解答 解:(1)∵b=$\frac{\sqrt{{a}^{2}-4}+\sqrt{4-{a}^{2}}+8}{a+2}$,
∴a2-4≥0,4-a2≥0,解得:a=±2,∵a+2≠0,
∴a=2,
∴b=2,
∴B(2,2);
(2)作BM⊥y軸于M,BN⊥x軸于N點,如圖:
∴∠MBN=90°.
∵BC⊥AB,
∴∠ABC=90°.
∴∠ABM=∠CBN.
∵B點坐標是(2,2),
∴BM=BN,
在△ABM和△CBN中,
$\left\{\begin{array}{l}{∠ANB=∠BNC}\\{BM=BN}\\{∠ABM=∠CBN}\end{array}\right.$,
∴△ABM≌△CBN(ASA),
∴BA=BC.
點評 本題考查了全等三角形的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì),二次根式的性質(zhì),本題中求證△ABE≌△CBD是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | x(x-1)=15 | B. | x(x+1)=15 | C. | $\frac{x(x-1)}{2}$=15 | D. | $\frac{x(x+1)}{2}$=15 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 12πcm2 | B. | 15πcm2 | C. | 20πcm2 | D. | 25πcm2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com