【題目】如圖,等邊△中,于,,點、分別為、上的兩個定點且,在上有一動點使最短,則的最小值為_____.
【答案】5
【解析】
作點Q關(guān)于BD的對稱點Q′,連接PQ′交BD于E,連接QE,此時PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;
解:如圖,∵△ABC是等邊三角形,
∴BA=BC,
∵BD⊥AC,
∴AD=DC=3.5cm,
作點Q關(guān)于BD的對稱點Q′,連接PQ′交BD于E,連接QE,此時PE+EQ的值最。钚≈PE+PQ=PE+EQ′=PQ′,
∵AQ=2cm,AD=DC=3.5cm,
∴QD=DQ′=1.5cm,
∴CQ′=BP=2cm,
∴AP=AQ′=5cm,
∵∠A=60°,
∴△APQ′是等邊三角形,
∴PQ′=PA=5cm,
∴PE+QE的最小值為:5cm.
故答案為:5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,頂點為,以為直徑作D.下列結(jié)論:①拋物線的對稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與軸,軸分別交于,兩點,點從點出發(fā),沿射線的方向運動,已知,點的橫坐標為,連接,,記的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式及的取值范圍;
(2)在圖2所示的平面直角坐標系中畫出(1)中所得函數(shù)的圖象,記其與軸的交點為,將該圖象繞點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖象;
(3)結(jié)合函數(shù)圖象,直接寫出旋轉(zhuǎn)前后的圖象與直線的交點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知、,,在的邊上取兩點、(點是不同于點的點),若以、、為頂點的三角形與全等,則符合條件的點的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某直銷公司現(xiàn)有名推銷員,月份每個人完成銷售額(單位:萬元),數(shù)據(jù)如下:
整理上面的數(shù)據(jù)得到如下統(tǒng)計表:
銷售額 | ||||||||||
人數(shù) |
(1)統(tǒng)計表中的 ; ;
(2)銷售額的平均數(shù)是 ;眾數(shù)是 ;中位數(shù)是 .
(3)月起,公司為了提高推銷員的積極性,將采取績效工資制度:規(guī)定一個基本銷售額,在基本銷售額內(nèi),按抽成;從公司低成本與員工愿意接受兩個層面考慮,你認為基本銷售額定位多少萬元?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線,點,分別是直線,上任意兩點,在直線上取一點,使,連接,在直線上任取一點,作,交直線于點.
(1)如圖1,若點是線段上任意一點,交于,求證:;
(2)如圖2,點在線段的延長線上時,與互為補角,若,請判斷線段與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1, 和均為等邊三角形,點在同一直線上,連接
①求證:; ②求的度數(shù).
(2)拓展探究:如圖2, 和均為等腰直角三角形,,點在同一直線上為中邊上的高,連接
①求的度數(shù):
②判斷線段之間的數(shù)量關(guān)系(直接寫出結(jié)果即可).
解決問題:如圖3,和均為等腰三角形,,點在同一直線上,連接.求的度數(shù)(用含的代數(shù)式表示,直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點E,則k的值是 ( )
(A)33 (B)34 (C)35 (D)36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c.
(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)
①求該拋物線的解析式;
②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.
設(shè)以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標為x,當(dāng)4+6≤S≤6+8時,求x的取值范圍;
(Ⅱ)若a>0,c>1,當(dāng)x=c時,y=0,當(dāng)0<x<c時,y>0,試比較ac與l的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com