【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了兩幅尚不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若從對(duì)校園安全知識(shí)達(dá)到了“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

【答案】
(1)60;90°
(2)解:了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補(bǔ)圖如下:


(3)解:畫樹狀圖得:

∵共有20種等可能的結(jié)果,恰好抽到1個(gè)男生和1個(gè)女生的有12種情況,

∴恰好抽到1個(gè)男生和1個(gè)女生的概率為: =


【解析】解:(1)∵了解很少的有30人,占50%, ∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人).
∴扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為: ×360°=90°.
所以答案是:60,90°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解全面調(diào)查與抽樣調(diào)查的相關(guān)知識(shí),掌握全面調(diào)查收集到的數(shù)據(jù)全面、準(zhǔn)確,但一般花費(fèi)多、耗時(shí)長,而且某些調(diào)查不宜用全面調(diào)查;抽樣調(diào)查具有花費(fèi)少、省時(shí)的特點(diǎn),但抽取的樣本是否具有代表性,直接關(guān)系到對(duì)總體估計(jì)的準(zhǔn)確程度,以及對(duì)扇形統(tǒng)計(jì)圖的理解,了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要利用28米長的籬笆和一堵最大可利用長為12米的墻圍成一個(gè)如圖1的一邊靠墻的矩形養(yǎng)雞場,在圍建的過程中遇到了以下問題,請(qǐng)你幫忙來解決.

(1)這個(gè)矩形養(yǎng)雞場要怎樣建面積能最大?求出這個(gè)矩形的長與寬;
(2)在(1)的前提條件下,要在墻上選一個(gè)點(diǎn)P,用不可伸縮的繩子分別連接BP,CP,點(diǎn)P取在何處所用繩子長最短?
(3)仍然是矩形養(yǎng)雞場面積最大的情況下,若把(2)中的不可伸縮的繩子改為可以伸縮且有彈性的繩子,點(diǎn)P可以在墻上自由滑動(dòng),求sin∠BPC的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校去年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2400元,購買乙種足球共花費(fèi)1600元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元.
(1)求購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;
(2)今年學(xué)校為編排“足球操”,決定再次購買甲、乙兩種足球共50個(gè).如果兩種足球的單價(jià)沒有改變,而此次購買甲、乙兩種足球的總費(fèi)用不超過3500元,那么這所學(xué)校最少可購買多少個(gè)甲種足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)在實(shí)施居民用水額定管理前,對(duì)居民生活用水情況進(jìn)行了調(diào)查,下表是通過簡單隨機(jī)抽樣獲得的50個(gè)家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:

4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7

4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5

3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2

5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5

4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5

頻數(shù)分布表

分組

劃記

頻數(shù)

2.0x≤3.5

正正

11

3.5x≤5.0


19

5.0x≤6.5



6.5x≤8.0



8.0x≤9.5


2

合計(jì)


50

1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)從直方圖中你能得到什么信息?(寫出兩條即可);

3)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)用水量的標(biāo)準(zhǔn),超出這個(gè)標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使60%的家庭收費(fèi)不受影響,你覺得家庭月均用水量應(yīng)該定為多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一面積為5 的等腰三角形,它的一個(gè)內(nèi)角是30°,則以它的腰長為邊的正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中:有公共頂點(diǎn)和一條公共邊的兩個(gè)角一定是鄰補(bǔ)角;垂線段最短;經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行;相等的角是對(duì)頂角;等角的余角相等,其中假命題的個(gè)數(shù)是

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;

(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)H.

①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時(shí),求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

(1)如圖①,若AB∥CD,點(diǎn)P在AB,CD外部,則有 ∠B=∠BOD,又因?yàn)椤螧OD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.將點(diǎn)P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,請(qǐng)說明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;

(2)在圖②中,將直線AB繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)

(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地治理水質(zhì),保護(hù)環(huán)境,我縣污水處理公司決定購買10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種設(shè)備可供選擇,月處理污水分別為240m3/月、200m3/月,經(jīng)調(diào)查:購買一臺(tái)A型設(shè)備比購買一臺(tái)B型設(shè)備多2萬元,購買2臺(tái)A型設(shè)備比購買3臺(tái)B型設(shè)備少6萬元.

(1)若污水處理公司購買設(shè)備的預(yù)算資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案?

(2)若每月需處理的污水約2040m3,在不突破資金預(yù)算的前提下,為了節(jié)約資金,又要保證治污效果,請(qǐng)你為污水處理公司設(shè)計(jì)一種最省錢的方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案