【題目】如圖,在平面直角坐標(biāo)系 xOy 中,點(diǎn) A 是一次函數(shù) y 3x 20 與 y x 12的交點(diǎn),過點(diǎn) A 分別作 x 、 y 軸的垂線段,垂足分別是 B 和C ,動(dòng)點(diǎn) P 和Q 以1個(gè)單位/秒的速度,分別從點(diǎn)C 、 B 出發(fā),沿線段CA 、 BO 方向,向終點(diǎn) A 、O 運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)證明:無論運(yùn)動(dòng)時(shí)間t 0 t 8取何值,四邊形OPAQ 始終為平行四邊形;
(2)當(dāng)四邊形OPAQ 為菱形時(shí),請(qǐng)求出此時(shí) PQ 的長(zhǎng)度及直線 PQ 的函數(shù)解析式;
(3)當(dāng)OP 滿足 2 OP 5時(shí),連接 PQ ,直線 PQ 與 y 軸交于點(diǎn) M ,取線段 AC 的中點(diǎn) N ,試確定 MNP 的面積 S 與運(yùn)動(dòng)的時(shí)間t 之間的函數(shù)關(guān)系式,并求出 S 的取值范圍.
【答案】(1)證明見解析;(2),y=-2x+10;(3)S=t(2≤t≤3),2≤S≤3.
【解析】
(1)根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形判斷即可;
(2)過P作PH⊥x軸于H,則CP=OH,PH=CO.解方程組求出A的坐標(biāo),由菱形的性質(zhì)以及勾股定理求得t的值,進(jìn)而得到OQ、OH,HQ的長(zhǎng).利用勾股定理即可求出PQ的長(zhǎng),利用待定系數(shù)法可得到直線PQ的解析式.
(3)分別計(jì)算出當(dāng)OP=和OP=5時(shí),對(duì)應(yīng)的t的值,即可得出t的取值范圍.
再利用相似三角形的判定與性質(zhì)表示出MC,然后利用三角形面積公式即可得出結(jié)論.
(1)∵0 t 8,∴CP=QB=t.
∵CA=OB,∴PA=OQ.
∵PA∥OQ,∴四邊形OPAQ為平行四邊形.
(2)過P作PH⊥x軸于H,則CP=OH,PH=CO.
解方程組得:,∴A(8,4),∴CO=BA=4,OB=CA=8.
∵四邊形OPAQ 為菱形,∴OP=PA=OQ=8-t.在Rt△CPO中,∵OC2+CP2=OP2,∴,解得:t=3,∴OQ=8-t=5,OH=CP=3,∴HQ=OQ-OH=5-3=2.
∵PH=CO=4,∴PQ===.
∵CP=3,OQ=5,∴P(3,4),Q(5,0).設(shè)直線PQ的解析式為y=kx+b,∴,解得:,∴.設(shè)直線PQ的解析式為y=-2x+10.
(3)當(dāng)OP=時(shí),CP==2,∴t=2;
當(dāng)OP=5時(shí),CP==3,∴t=3;∴2≤t≤3.
∵CP∥OQ,∴△MCP∽△MOQ,∴,∴,解得:MC=.
∵CA=8,∴CN=4,∴PN=4-t,∴△MNP的面積S=PNCM==t,∴S=t(2≤t≤3),∴2≤S≤3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=6, ∠BAC=30, ∠BAC的平分線交BC于點(diǎn)D,E,F分別是線段AD和AB上的動(dòng)點(diǎn),則BE+EF的最小值是___
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動(dòng)點(diǎn)P滿足,則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,延長(zhǎng)BC至E點(diǎn),使CE=BC,點(diǎn)P是AD邊上的動(dòng)點(diǎn),以cm/s的速度從D點(diǎn)到A點(diǎn)方向運(yùn)動(dòng),連接AC、CP、DE.
(1)若AD=,運(yùn)動(dòng)時(shí)間為t,當(dāng)四邊形PCED為平行四邊形時(shí),求t的值;
(2)M是CP的中點(diǎn),PF⊥AC,垂足為F,PG⊥CD,垂足為G,連接MF,MG,求證:∠GMF=2∠ACD.
(3)在(2)的條件下,若∠B=75°,∠ACB=45°,AC=,連接GF,求△MGF周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長(zhǎng)方形 ABCD 沿 EF 折疊,使點(diǎn) D 與點(diǎn) B 重合,已知 AB 3 ,AD 9 .
(1)求 BE 的長(zhǎng);
(2)求 EF 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),的邊垂直于軸,垂足為,已知.反比例函數(shù)的圖象經(jīng)過的中點(diǎn),交于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)求經(jīng)過、兩點(diǎn)的直線所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)設(shè)點(diǎn)是軸上的動(dòng)點(diǎn),請(qǐng)直接寫出使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑞瑞有一個(gè)小正方體,6個(gè)面上分別畫有平行四邊形、圓、等腰梯形、菱形、等邊三角形和直角梯形這6個(gè)圖形.拋擲這個(gè)正方體一次,向上一面的圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得△AFB,連接EF,下列結(jié)論:①△AED≌△AEF;②△ABC的面積等于四邊形AFBD的面積;③BE+DC=DE;④BE2+DC2=DE2;⑤∠ADC=22.5°,其中正確的是( )
A. ①③④ B. ③④⑤ C. ①②④ D. ①②⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)、分別是、的中點(diǎn),平分,交于點(diǎn),交于點(diǎn).
(1)求證:四邊形是菱形;
(2)若,,求四邊形的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com