已知:如圖,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn)(不與點(diǎn)B重合),EP與BD相交于點(diǎn)O.
(1)當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),求證:△BOP∽△DOE;
(2)設(shè)(1)中的相似比為k,若AD:BC=2:3.請(qǐng)?zhí)骄浚寒?dāng)k為下列三種情況時(shí),四邊形ABPE是什么四邊形?①當(dāng)k=1時(shí),是______;②當(dāng)k=2時(shí),是______;③當(dāng)k=3時(shí),是______.并證明k=2時(shí)的結(jié)論.

【答案】分析:(1)△BOP和△DOE中,已知的條件有:對(duì)頂角∠EOD=∠POB;根據(jù)AD∥BC,可得出內(nèi)錯(cuò)角∠OED=∠OPB,由此可判定兩個(gè)三角形相似;
(2)由于E是AD中點(diǎn),且AD:BC=2:3,得BC=3DE=3AE;
①當(dāng)k=1時(shí),△ODE和△OBP全等,則DE=BP=AE,又由AE∥BP,則四邊形AEPB的對(duì)邊平行且相等,由此得出四邊形AEPB是平行四邊形;
②當(dāng)k=2時(shí),BP=2DE,此時(shí)PC=BC-BP=DE,易證得四邊形DEPC是矩形,則四邊形AEPB是直角梯形;
③當(dāng)k=3時(shí),BP=3DE,此時(shí)P、C重合,可過A、E分別作BC的垂線,設(shè)垂足為M、N;根據(jù)①②的解題過程易知BM=MN=CN=DE,可證△AMB≌△ENC,得出AB=EC(即EP),由此可證得四邊形ABCD是等腰梯形.
解答:(1)證明:
∵AD∥BC
∴∠OBP=∠ODE.
又∠BOP=∠DOE,
∴△BOP∽△DOE;(有兩個(gè)角對(duì)應(yīng)相等的兩三角形相似);

(2)解:①平行四邊形;
②直角梯形;
③等腰梯形;
證明:②當(dāng)k=2時(shí),,
∴BP=2DE=AD
又∵AD:BC=2:3,即BC=AD,
∴PC=BC-BP=AD-AD=AD=ED,
又ED∥PC,
∴四邊形PCDE是平行四邊形,
∵∠DCB=90°
∴四邊形PCDE是矩形(7分)
∴∠EPB=90°(8分)
又∵在直角梯形ABCD中
AD∥BC,AB與DC不平行
∴AE∥BP,AB與EP不平行
四邊形ABPE是直角梯形.(9分)
(本題其它證法參照此標(biāo)準(zhǔn)給分)
點(diǎn)評(píng):此題主要考查了梯形的性質(zhì)及相似三角形的判定和性質(zhì).在證明四邊形是梯形的過程中,不要遺漏證明另一組對(duì)邊不平行的步驟.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,對(duì)角線CA平分∠BCD,且梯形的周長(zhǎng)為20,求AC的長(zhǎng)及梯形面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,點(diǎn)E為AC的中點(diǎn).求證:DE=
12
BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)已知:如圖,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足為點(diǎn)F,且F是DE的中點(diǎn),聯(lián)結(jié)AE,交邊BC于點(diǎn)G.
(1)求證:四邊形ABGD是平行四邊形;
(2)如果AD=
2
AB
,求證:四邊形DGEC是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的長(zhǎng);
        (2)梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案