【題目】如圖,拋物線軸交于點,交軸于點,直線過點軸交于點,與拋物線的另一個交點為,作軸于點.設點是直線上方的拋物線上一動點(不與點、重合),過點軸的平行線,交直線于點,作于點.

1)填空:__________,____________________;

2)探究:是否存在這樣的點,使四邊形是平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由;

3)設的周長為,點的橫坐標為,求的函數(shù)關系式,并求出的最大值.

【答案】1,,;(2)存在,點的坐標是;(3,的最大值是15.

【解析】

1)將AB兩點分別代入y=x2+bx+c求出b,c,將A代入y=kx-求出k;
2)首先假設出PM點的坐標,進而得出PM的長,將兩函數(shù)聯(lián)立得出D點坐標,進而得出CE的長,利用平行四邊形的判定得出PM=CE時四邊形PMEC是平行四邊形,得出等式方程求解并判斷即可;
3)利用勾股定理得出DC的長,進而根據(jù)PMN∽△DCE,得出兩三角形周長之比,求出lx的函數(shù)關系,再利用配方法求出二次函數(shù)最值即可.

解:(1):(1)把A2,0),B0,)代入y=x2+bx+c

解得;
A2,0)代入y=kx-2k-=0,解得k=
,,

2)設的坐標是,則的坐標是

,

解方程,得:,,

∵點在第三象限,則點的坐標是

得點的坐標是,

由于軸,所以當時四邊形是平行四邊形.

,

解這個方程得:,,符合

時,,當時,

綜上所述:點的坐標是;

3)在中,,

由勾股定理得:

的周長是24

軸,∴

,即

化簡整理得:的函數(shù)關系式是:

,

,∴當時,的最大值是15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在距離大足城區(qū)的1.5公里的北山之上,有一處密如峰房的石窟造像點,今被稱為北山石窟.北山石窟造像在兩宋時期達到鼎盛,逐漸都成了以北山佛灣為中心,環(huán)繞營盤坡、佛耳巖,觀音坡、多寶塔等多處造像點的大型石窟群.多寶塔,也稱為白塔”“北塔,于巖石之上,為八角形閣式磚塔,外觀可辨十二級,其內(nèi)有八層樓閣,可沿著塔心內(nèi)的梯道逐級而上,元且期間,小華和媽媽到大足北山游玩,小華站在坡度為l12的山坡上的B點觀看風景,恰好看到對面的多寶培,測得眼睛A看到塔頂C的仰角為30°,接著小華又向下走了10米,剛好到達坡底E,這時看到塔頂C的仰角為45°,若AB1.5米,則多寶塔的高度CD約為(  )(精確到0.1米,參考數(shù)據(jù)≈1.732

A. 51.0B. 52.5C. 27.3D. 28.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點OE、F分別在OD、OC上的動點,且DE=CF,連接DF、AE,AE的延長線交DF于點M,連接OM

1)求證:ADE≌△DCF;

2)求證:AMDF

3)當CD=AF時,試判斷MOF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知)的函數(shù),表1中給出了幾組的對應值:

1

1

2

3

6

3

2

1

1)以表中各對對應值為坐標,在圖1的直角坐標系中描出各點,用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學過的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;

2)如果一次函數(shù)圖像與(1)中圖像交于兩點,在第一、四象限內(nèi)當在什么范圍時,一次函數(shù)的值小于(1)中函數(shù)的值?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CDAC30 cm.

(1)如圖2,當∠BAC24°時,CDAB,求支撐臂CD的長;

(2)如圖3,當∠BAC12°時,求AD的長.(結(jié)果保留根號)

(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、C、F、B四點在一條直線上,AB=DE,ACBD,EFBD,垂足分別為點C、點F,CD=BF.

求證:(1)ABC≌△EDF;

(2)ABDE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點都在反比例函數(shù)的圖象上.

1)求的值;

2)如果軸上一點,軸上一點,以點為頂點的四邊形是平行四邊形,試求直線的函數(shù)表達式;

3)將線段沿直線進行對折得到線段,且點始終在直線上,當線段軸有交點時,則的取值范圍為_______(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為改善辦學條件,計劃采購A、B兩種型號的空調(diào),已知采購3A型空調(diào)和2B型空調(diào),需費用39000元;4A型空調(diào)比5B型空調(diào)的費用多6000元.

(1)求A型空調(diào)和B型空調(diào)每臺各需多少元;

(2)若學校計劃采購A、B兩種型號空調(diào)共30臺,且A型空調(diào)的臺數(shù)不少于B型空調(diào)的一半,兩種型號空調(diào)的采購總費用不超過217000元,該校共有哪幾種采購方案?

(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五端午節(jié)來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;

2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?

3)為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

同步練習冊答案