如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長(zhǎng).

【答案】分析:根據(jù)∠ABC=90°,AE=CE,EB=12,求出AC,根據(jù)Rt△ABC中,∠CAB=30°,BC=12,求出,根據(jù)DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,從而得出DC的長(zhǎng),最后根據(jù)四邊形ABCD的周長(zhǎng)=AB+BC+CD+DA即可得出答案.
解答:解:∵∠ABC=90°,AE=CE,EB=12,
∴EB=AE=CE=12,
∴AC=AE+CE=24,
∵在Rt△ABC中,∠CAB=30°,
∴BC=12,,
∵DE⊥AC,AE=CE,
∴AD=DC,
在Rt△ADE中,由勾股定理得 AD=,
∴DC=13,
∴四邊形ABCD的周長(zhǎng)=AB+BC+CD+DA=38+
點(diǎn)評(píng):此題考查了解直角三角形,用到的知識(shí)點(diǎn)是解直角三角形、直角三角形斜邊上的中線、勾股定理等,關(guān)鍵是根據(jù)有關(guān)定理和解直角三角形求出四邊形每條邊的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案