已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),.已知當(dāng)時(shí),;當(dāng)時(shí),.
⑴求一次函數(shù)的解析式;
⑵已知雙曲線在第一象限上有一點(diǎn)C到y(tǒng)軸的距離為3,求△ABC的面積.

解:(1)∵當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2,∴點(diǎn)A的橫坐標(biāo)為1。
將x=1代入反比例函數(shù)解析式,,∴點(diǎn)A的坐標(biāo)為(1,6)。
又∵點(diǎn)A在一次函數(shù)圖象上,∴1+m=6,解得m=5。
∴一次函數(shù)的解析式為y1=x+5。
(2)∵第一象限內(nèi)點(diǎn)C到y(tǒng)軸的距離為3,∴點(diǎn)C的橫坐標(biāo)為3。
。 ∴點(diǎn)C的坐標(biāo)為(3,2)。
過點(diǎn)C作CD∥x軸交直線AB于D,則點(diǎn)D的縱坐標(biāo)為2

∴x+5=2,解得x=﹣3!帱c(diǎn)D的坐標(biāo)為(﹣3,2)。
∴CD=3﹣(﹣3)=3+3=6。
點(diǎn)A到CD的距離為6﹣2=4。
聯(lián)立,解得(舍去),。∴點(diǎn)B的坐標(biāo)為(﹣6,﹣1)。
∴點(diǎn)B到CD的距離為2﹣(﹣1)=2+1=3。
∴SABC=SACD+SBCD=×6×4+×6×3=12+9=21。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)的圖象與直線y=-x+1平行,且過點(diǎn)(8,2),那么此一次函數(shù)的解析式為( 。
A、y=-x-2B、y=-x-6C、y=-x+10D、y=-x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算或化簡:
(1)已知2x2=50,求x;
(2)|
2
-1
|-
38
+
4
;
(3)已知一次函數(shù)的圖象與y=
1
2
-x的圖象平行,且與y軸交點(diǎn)(0,-3),求此函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)的圖象與x軸、y軸的交點(diǎn)坐標(biāo)分別是(-2,1)、(0,4),求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)的圖象與x軸,y軸分別交于A,B兩點(diǎn),且與反比例函數(shù)圖象交于點(diǎn)C,點(diǎn)C精英家教網(wǎng)在第一象限,CD⊥x軸于D,若OA=OB=OD=1.
(1)求點(diǎn)A,B,D的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)為(-2,0)、(0,2),則一次函數(shù)的解析式為
y=x+2
y=x+2

查看答案和解析>>

同步練習(xí)冊(cè)答案