在圖1、圖2的正方形網(wǎng)格中,分別有一張平行四邊形紙片.請在左邊的圖形中各畫一條分割線,將平行四邊形紙片分割成兩部分,并把這兩部分在右邊的正方形網(wǎng)格中重新拼合,使拼合后的圖形滿足相應(yīng)的要求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)與探究:
(1)請在圖1的正方形ABCD中,作出使∠APB=90°的所有點P,并簡要說明做法.我們可以這樣解決問題:利用直徑所對的圓周角等于90°,作以AB為直徑的圓,則正方形ABCD內(nèi)部的半圓上所有點(A、B除外)為所求.
(2)請在圖2的正方形ABCD內(nèi)(含邊),畫出使∠APB=60°的所有的點P,尺規(guī)作圖,不寫作法,保留痕跡;
(3)如圖3,已知矩形ABCD中,AB=4,AC=3,請在矩形內(nèi)(含邊),畫出∠APB=60°的所有的點P,尺規(guī)作圖,不寫作法,保留痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.

譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.

問題提出:如何把一個正方形分割成)個小正方形?

為解決上面問題,我們先來研究兩種簡單的“基本分割法”.

基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.

基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

 


問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成)個小正方形.

(1)把一個正方形分割成9個小正方形.

一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進(jìn)行分割,就可增加5個小正方形,從而分割成(個)小正方形.

另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進(jìn)行分割,就可增加3個小正方形,從而分割成(個)小正方形.

(2)把一個正方形分割成10個小正方形.

方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進(jìn)行分割,就可增加個小正方形,從而分割成(個)小正方形.

(3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

(4)把一個正方形分割成)個小正方形.

方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成)個小正方形.

從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成)個小正方形.

類比應(yīng)用:仿照上面的方法,我們可以把一個正三角形分割成)個小正三角形.

(1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a 中畫出草圖).

(2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b 中畫出草圖).

(3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

 


(4)請你寫出把一個正三角形分割成)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省中考真題 題型:解答題

圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O,如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它以每秒1個單位長的速度由起始位置向外擴(kuò)大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴(kuò)大為8×8;再經(jīng)過一秒,由8×8擴(kuò)大為10×10;……),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮小,另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A→B→C→D→A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當(dāng)點Q與點B重合時,再向上平移,當(dāng)點M與點C重合時,再向右平移,當(dāng)點N與點D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動),正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設(shè)運動時間為x秒,它們的重疊部分面積為y個平方單位。
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式;
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少。


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•河北)圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它每秒1個單位長的速度由起始位置向外擴(kuò)大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴(kuò)大為8×8;再經(jīng)過一秒,由8×8擴(kuò)大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當(dāng)點Q與點B重合時,再向上平移,當(dāng)點M與點C重合時,再向右平移,當(dāng)點N與點D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設(shè)運動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式.
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說明:問題(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•河北)圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它每秒1個單位長的速度由起始位置向外擴(kuò)大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴(kuò)大為8×8;再經(jīng)過一秒,由8×8擴(kuò)大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當(dāng)點Q與點B重合時,再向上平移,當(dāng)點M與點C重合時,再向右平移,當(dāng)點N與點D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設(shè)運動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式.
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說明:問題(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

同步練習(xí)冊答案