如圖,已知等邊△ABC中,D、E分別為BC、AC上的點,且AE=OC,連接AD、BE交于點P,過B作QB⊥AD,Q為垂足.求證:BP=2PQ.

答案:略
解析:

證明:∵△ABC為等邊三角形,

∴∠BAC=ACB=60°,AB=AC,

在△ABE和△CAD中,

∴△ABE≌△CAD(SAS)

∴∠2=1,

∵∠BPQ=2+∠3,

∴∠BPQ=1+∠3,

∴∠BPQ=BAC=60°.

QBAD,

∴∠PBQ=30°,

BP=2PQ


提示:

由于△BPQ為直角三角形,欲證BP=2PQ只需證明∠PDQ=30°或∠BPQ=60°,由等邊△ABC知它的內(nèi)角都等于60°,故只須證∠BPQ與△ABC的一個內(nèi)角相等.又∠BPD=2+∠3,而知上∠1+∠3=60°,所以只要證∠1=2,而由已知得△ABE≌△CAD,故問題得證.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的中位線DE的長為1,
則下面結(jié)論中正確的是
 
.(填序號)精英家教網(wǎng)
①AB=2;②△DAE≌△BAC;
③△DAE的周長與△BAC的周長之比為1:3;
④△DAE的面積與△BAC的面積之比為1:4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的邊長為2,AD是BC邊上的高.
(1)在△ABC內(nèi)部作一個矩形EFGH(如圖①),其中E、H分別在邊AB、AC上,F(xiàn)G在邊BC上.
①設(shè)矩形的一邊FG=x,那么EF=
 
;(用含有x的代數(shù)式表示)精英家教網(wǎng)
②設(shè)矩形的面積為y,當x取何值時,y的值最大,最大值是多少?
(2)當矩形EFGH面積最大時,請在圖②中畫出此時點E的位置.(要求尺規(guī)作圖,保留作圖痕跡,并簡要說明確定點E的方法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)如圖,已知等邊△ABC的邊長為1,設(shè)
n
=
AB
+
BC
,那么向量
n
的模|
n
|=
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點P,設(shè)點P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點P是邊BC的中點,此時h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點P分別在線段MC上、MC延長線上、△ABC內(nèi)、△ABC外.
(1)請?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點P在梯形內(nèi),且點P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的邊長為10,點P、Q分別為邊AB、AC上的一個動點,點P從點B出發(fā)以1cm/s的速度向點A運動,點Q從點C出發(fā)以2cm/s的速度向點A運動,連接PQ,以Q為旋轉(zhuǎn)中心,將線段PQ按逆時針方向旋轉(zhuǎn)60°得線段QD,若點P、Q同時出發(fā),則當運動
10
3
10
3
s時,點D恰好落在BC邊上.

查看答案和解析>>

同步練習冊答案