【題目】如圖,已知正七邊形ABCDEFG,請(qǐng)僅用無刻度的直尺,分別按下列要求畫圖.
(1)在圖1中,畫出一個(gè)以AB為邊的平行四邊形;
(2)在圖2中,畫出一個(gè)以AF為邊的菱形.
【答案】
(1)解:如下圖所示:
(2)解:如下圖所示:
【解析】(1)連接AF、BE、CG,CG交AF于M,交BE于N.四邊形ABNM是平行四邊形.(2)連接AF、BE、CG,CG交AF于M,交BE于N,連接DF交BE于H,四邊形MNHF是菱形.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分),還要掌握菱形的性質(zhì)(菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且S△AOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2= 的圖象交與A(1,M),B(n,﹣1)兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,連接AO,BO.得出以下結(jié)論:
①點(diǎn)A和點(diǎn)B關(guān)于直線y=﹣x對(duì)稱;
②當(dāng)x<1時(shí),y2>y1;
③S△AOC=S△BOD;
④當(dāng)x>0時(shí),y1 , y2都隨x的增大而增大.
其中正確的是( )
A.①②③
B.②③
C.①③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y= (x≥0)交于A,B兩點(diǎn),過點(diǎn)A作CD∥x軸分別與y軸和拋物線C2交于點(diǎn)C,D,過點(diǎn)B作EF∥x軸分別與y軸和拋物線C1交于點(diǎn)E,F(xiàn),則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2﹣2 ax﹣9a與坐標(biāo)軸交于A,B,C三點(diǎn),其中C(0,3),∠BAC的平分線AE交y軸于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D的直線l與射線AC,AB分別交于點(diǎn)M,N.
(1)直接寫出a的值、點(diǎn)A的坐標(biāo)及拋物線的對(duì)稱軸;
(2)點(diǎn)P為拋物線的對(duì)稱軸上一動(dòng)點(diǎn),若△PAD為等腰三角形,求出點(diǎn)P的坐標(biāo);
(3)證明:當(dāng)直線l繞點(diǎn)D旋轉(zhuǎn)時(shí), + 均為定值,并求出該定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),∠ABC=30°,過點(diǎn)P作PD⊥OP交⊙O于點(diǎn)D.
(1)如圖2,當(dāng)PD∥AB時(shí),求PD的長(zhǎng);
(2)如圖3,當(dāng) = 時(shí),延長(zhǎng)AB至點(diǎn)E,使BE= AB,連接DE. ①求證:DE是⊙O的切線;
②求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C,連接AP',則sin∠PAP'的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
我們知道,1+2+3+…+n= ,那么12+22+32+…+n2結(jié)果等于多少呢?
在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12 , 第2行兩個(gè)圓圈中數(shù)的和為2+2,即22 , …;第n行n個(gè)圓圈中數(shù)的和為 ,即n2 , 這樣,該三角形數(shù)陣中共有 個(gè)圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2 .
(1)將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個(gè)圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中數(shù)的和均為 , 由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)= , 因此,12+22+32+…+n2= .
(2)根據(jù)以上發(fā)現(xiàn),計(jì)算: 的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com