如圖,在△ABC和△FED中,AD=FC,AB=FE,當(dāng)添加條件
BC=DE
BC=DE
時(shí),既可以得到△ABC≌△FED.(只需填寫(xiě)一個(gè)你認(rèn)為正確的條件)
分析:添加條件BC=DE,根據(jù)AD=CF可得AC=DF,再加上條件AD=FC,AB=FE可用SSS定理證明△ABC≌△FED.
解答:解:添加條件BC=DE,
理由:∵AD=CF,
∴AD+DC=CF+DC,
即AC=DF,
在△ABC和△FED中,
AC=FD
AB=EF
CB=DE
,
∴△ABC≌△FED(SSS).
故答案為:DE=BC.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點(diǎn)E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補(bǔ),DE=mAC(m>1).試探索線段EF與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點(diǎn).則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請(qǐng)說(shuō)明AE=BD的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案