【題目】如圖所示,菱形ABCD的邊長是2厘米,∠BAD=120°,動點(diǎn)M以1厘米/秒的速度自A點(diǎn)出發(fā)向B移動,動點(diǎn)N以2厘米/移的速度自B點(diǎn)出發(fā)向D移動,兩點(diǎn)中任一個到達(dá)線段端點(diǎn)移動便告結(jié)束.若點(diǎn)M、N同時出發(fā)運(yùn)動了t秒,記△BMN的面積為S厘米2,下面圖象中能表示S與t之間的函數(shù)關(guān)系的是( )
A.B.
C.D.
【答案】B
【解析】
連接AC與BD交于點(diǎn)O,作MH⊥BD,垂足為H,根據(jù)菱形的性質(zhì)以及題目給出的條件可得BO=cm,進(jìn)而得出BD=cm,根據(jù)題意可知AM=tcm,BN=2tcm,根據(jù)題意得出t的取值范圍,再根據(jù)三角形的面積公式得出S與t之間的函數(shù)關(guān)系式即可得出正確選項.
解:如圖,連接AC與BD交于點(diǎn)O,作MH⊥BD,垂足為H,
∵ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠ABO=30°,
∴BO=ABcos30°==(cm),
∴BD=(cm),
根據(jù)s=vt可知,AM=t(cm),BN=2t(cm),
∵0≤AM≤2,得0≤t≤2,,
∴,
∵在△BMH中,BN=2t,MH=BMsin30°=,
∴==(),
此函數(shù)的圖象為開口方向向下的拋物線的一部分,且圖象兩個端點(diǎn)的橫坐標(biāo)分別為0,.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的邊與經(jīng)過三點(diǎn)的相切.
(1)求證:弧弧;
(2)如圖2,延長交于點(diǎn),連接若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)開展了“行車安全,方便居民”的活動,對地下車庫作了改進(jìn).如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時點(diǎn)B、C、D在同一直線上).
(1)求這個車庫的高度AB;
(2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為開展“陽光體育”活動,計劃拿出不超過3000元的資金購買一批籃球,羽毛球拍和乒乓球拍,已知籃球,羽毛球拍和乒乓球拍的單價比為8:3:2,且其單價和為130元,
(1)請問籃球,羽毛球拍和乒乓球拍的單價分別是多少元?
(2)若要求購買籃球,羽毛球拍和乒乓球拍的總數(shù)量是80個(副),羽毛球拍的數(shù)量是乒乓球拍數(shù)量的4倍,且購買乒乓球拍的數(shù)量不超過15副請問有幾種購買方案?哪種方案,才能使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張畫有內(nèi)切圓⊙P的直角三角形紙片AOB置于平面直角坐標(biāo)系中,已知點(diǎn)A(0,3),B(4,0),⊙P與三角形各邊相切的切點(diǎn)分別為D、E、F. 將直角三角形紙片繞其右下角的頂點(diǎn)依次按順時針方向旋轉(zhuǎn),第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,…,則直角三角形紙片旋轉(zhuǎn)2018次后,它的內(nèi)切圓圓心P的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一輛吊車的實物圖,圖2是其工作示意圖,是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)離地面的高度為.當(dāng)起重臂長度為,張角為118°.
(1)求操作平臺離地面的高度;
(2)當(dāng)張角為120°,其它條件不變時,求操作平臺升高的高度.
(最后結(jié)果精確到0.1,參考數(shù)據(jù):,,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com