【題目】(1)如圖1,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D.在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.請(qǐng)?zhí)骄拷Y(jié)果:
①直接寫(xiě)出∠EAF的度數(shù)=__________度;若旋轉(zhuǎn)角∠BCD=α°,則∠AEF=____________度(可以用含α的代數(shù)式表示);
②DE與EF相等嗎?請(qǐng)說(shuō)明理由;
(類比探究)
(2)如圖2,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D.在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.
①直接寫(xiě)出∠EAF的度數(shù)=___________度;
②若AE=1,BD=2,求線段DE的長(zhǎng)度.
【答案】(1)①90,2α;②相等,理由見(jiàn)解析;(2)①120;②.
【解析】
(1)①等腰直角三角形的性質(zhì)可得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明出△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,即可求解;②證出∠FCE=∠ECD即可證明△CFE≌△CDE,得出EF=DE,∠CFE=∠CDE,從而求出題①中∠AFE的度數(shù);
(2)①由△ABC是等邊三角形得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,,證明出△ACF≌△BCD,得出∠CAF=∠B=60°即可求解;②證出∠DCE=∠FCE,由SAS證明△CFE≌△CDE,得出DE=EF,作FH⊥AE交EA的延長(zhǎng)線于點(diǎn)H,解直角三角形即可求解.
解:(1)①∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,∠BAC=∠B=45°,
∵∠DCF=90°,
∴∠ACF=∠BCD,
在△ACF和△BCD中
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=45°,AF=DB,
∴∠EAF=∠BAC+∠CAF=90°.
②相等
∵∠ECD=45°,∠FCD=90°,
∴∠FCE=∠ECD =45°,
在△CFE和△CDE中
△CFE≌△CDE(SAS),
∴EF=DE,∠CFE=∠CDE,
∵∠CDE=∠B+α°=45°+α°,
∴∠EFC=45°+α°,
∴∠EFC+∠AFE=∠CDB=180°-45°-α,
∴45°+α°+∠AFE=135°-α°,
∴2α°=90°-∠AFE=∠AFE,
∴∠AFE=2α°.
(2)①∵△ABC是等邊三角形,
∴AC=BC,∠BAC=∠B=60°,
又∵∠DCF=60°
∴∠ACF=∠BCD,
在△ACF和△BCD中
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠CAF+∠CAE=120°.
②作FH⊥AE交EA的延長(zhǎng)線于點(diǎn)H,如圖所示,
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=30°,
∴∠FCE=∠DCE,
在△CFE和△CDE中
△CFE≌△CDE(SAS),
∴DE=EF,
在Rt△AFH中
∵∠AFH=180°-120°=60°,
∴AF=BD=2,
∴AH=1,FH=,
在Rt△EFH中,EF=,
∴EF=DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品交易會(huì)上,一商人將每件進(jìn)價(jià)為 5 元的紀(jì)念品,按每件 9 元出售,每天可售出 32件.他想采用提高售價(jià)的辦法來(lái)增加利潤(rùn),經(jīng)試驗(yàn),發(fā)現(xiàn)這種紀(jì)念品每件提價(jià) 2 元,每天的銷售量會(huì)減少 8 件.
(1)當(dāng)售價(jià)定為多少元時(shí),每天的利潤(rùn)為 140 元?
(2)寫(xiě)出每天所得的利潤(rùn) y(元)與售價(jià) (元/件)之間的函數(shù)關(guān)系式,每件售價(jià)定為多少元,才能使一天所得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=(售價(jià)-進(jìn)價(jià))×售出件數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( 。
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系△ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)
(1)先作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的,再把向上平移4個(gè)單位長(zhǎng)度得到;
(2)△ABC可以經(jīng)過(guò)一次旋轉(zhuǎn)變換得到,旋轉(zhuǎn)角的大小為多少?寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式: ,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述的不等式可以表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)他們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮(wèn)題的有力工具.
實(shí)例剖析:
已知x>0,求式子的最小值.
解:令a=x,b=,則由,得當(dāng)且僅當(dāng)時(shí),方程兩邊同時(shí)乘x,得到,解得x=2,式子有最小值,最小值為4.
學(xué)以致用:
根據(jù)上面的閱讀材料回答下列問(wèn)題:
(1)已知x>0,則當(dāng)x=__________時(shí),式子取到最小值,最小值為:_______________
(2)用籬笆圍一個(gè)面積為100m的長(zhǎng)方形花園,問(wèn)這個(gè)長(zhǎng)方形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆是多少米?
(3)已知x>0,則x取何值時(shí),式子取到最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個(gè)人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁(yè)薄型紙比厚型紙輕0.8克,求A4薄型紙每頁(yè)的質(zhì)量.(墨的質(zhì)量忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AC是菱形ABCD的對(duì)角線,且AC=BC.
(1)如圖①,點(diǎn)P是△ABC的一個(gè)動(dòng)點(diǎn),將△ABP繞著點(diǎn)B旋轉(zhuǎn)得到△CBE.
①求證:△PBE是等邊三角形;
②若BC=5,CE=4,PC=3,求∠PCE的度數(shù);
(2)連結(jié)BD交AC于點(diǎn)O,點(diǎn)E在OD上且DE=3,AD=4,點(diǎn)G是△ADE內(nèi)的一個(gè)動(dòng)點(diǎn)如圖②,連結(jié)AG,EG,DG,求AG+EG+DG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,有四個(gè)同樣大小的直角三角形,兩條直角邊分別為a、b,斜邊為c,拼成一個(gè)正方形,中間留有一個(gè)小正方形.
(1)利用它們之間的面積關(guān)系,探索出關(guān)于a、b、c的等式;
(2)利用(1)中發(fā)現(xiàn)的直角三角形中兩直角邊a,b和斜邊c之間的關(guān)系,完成問(wèn)題:如圖2,在直角△ABC中,∠C=90°,且c=6,a+b=8,則△ABC的面積為 ;
(3)如圖3所示,CD是直角△ABC中斜邊上的高,試證明CD2=ADBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某項(xiàng)研究表明,大拇指與小拇指盡量張開(kāi)時(shí),兩指尖的距離稱為指距.如表是測(cè)得的指距與身高的一組數(shù)據(jù):
指距d(cm) | 19 | 20 | 21 |
身高h(cm) | 151 | 160 | 169 |
(1)你能確定身高h與指距d之間的函數(shù)關(guān)系式嗎?
(2)若某人的身高為196cm,一般情況下他的指距應(yīng)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com