【題目】如圖,菱形ABCD中,∠BAD=60°,點E在邊AD上,連接BE,在BE上取點F,連接AF并延長交BD于H,且∠AFE=60°,過C作CG∥BD,直線CG、AF交于G.
(1)求證:∠FAE=∠EBA;
(2)求證:AH=BE;
(3)若AE=3,BH=5,求線段FG的長.
【答案】(1)證明見解析;(2)證明見解析;(3)FG=.
【解析】
(1)先證明兩三角形相似,再根據(jù)性質(zhì)得到結(jié)果(2)先證明兩三角形相似,再根據(jù)性質(zhì)得到邊的關(guān)系(3)先作輔助線,再證明兩三角形相似,再根據(jù)相似三角形性質(zhì)得到結(jié)果.
解:(1)∵∠AFE=∠BAE=60°、∠AEF=∠BEA,
∴△AEF∽△BEA,
∴∠FAE=∠ABE;
(2)∵四邊形ABCD是菱形,且∠BAD=60°,
∴AB=AD、∠BAE=∠ADB=60°,
在△ABE和△DAH中,
∵
∴△ABE≌△DAH(ASA),
∴AH=BE;
(3)如圖,連接AC交BD于點P,則AC⊥BD,且AC平分BD,
∵△ABE≌△DAH,
∴AE=DH=3,
則BD=BH+DH=8,
∴BP=PD=4,PH=BH﹣BP=1,
∵AB=BD=8,
∴AP==4,
則AC=2AP=8,
∵CG∥BD,且P為AC中點,
∴∠ACG=90°,CG=2PH=2,
∴AG==14,BE=AH=AG=7,
∵△AEF∽△BEA,
∴=,即=,
解得:AF=,
∴FG=AG﹣AF=14﹣=.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線和直線l在同一直角坐標系中的圖象如圖所示,拋物線的對稱軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點,P3(x3,y3)是直線l上的點,且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點A,過點A作AB⊥x軸于點B,則S△AOB=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
據(jù)此,小明猜想:對于任意銳角α,均有sin2α+sin2(90°-α)=1.
(1)當α=30°時,驗證sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,請給予證明;若不成立,請舉出一個反例.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,點E、F分別是邊BC、CD的中點,直線EF交邊AD的延長線于點M,交邊AB的延長線于點N,連接BD.
(1) 求證:四邊形DBEM是平行四邊形;
(2) 連接CM,當四邊形ABCM為平行四邊形時,求證:MN=2DB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,點A的坐標為(3,4),點B的坐標為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為________.(結(jié)果保留2個有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,延長線段AB交y 軸于點C,且點B為線段AC中點,過點A作AD⊥x軸子點D,點E 為線段OD的三等分點,且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A. ﹣12 B. ﹣10 C. ﹣9 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解同學們的身體發(fā)育情況,學校體衛(wèi)辦公室對七年級全體學生進行了身高測量(精確到1cm),并從中抽取了部分數(shù)據(jù)進行統(tǒng)計,請根據(jù)尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖解答下列問題:
頻率分布表
分組 | 頻數(shù) | 百分比 |
144.5~149.5 | 2 | 4% |
149.5~154.5 | 3 | 6% |
154.5~159.5 | a | 16% |
159.5~164.5 | 17 | 34% |
164.5~169.5 | b | n% |
169.5~174.5 | 5 | 10% |
174.5~179.5 | 3 | 6% |
(1)求a、b、n的值;
(2)補全頻數(shù)分布直方圖;
(3)學校準備從七年級學生中選拔護旗手,要求身高不低于170cm,如果七年級有學生350人,護旗手的候選人大概有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com