【題目】我國(guó)古代數(shù)學(xué)家趙爽利用弦圖證明了勾股定理,這是著名的趙爽弦圖(如圖1).它是由四個(gè)全等的直角三角形拼成了內(nèi)、外都是正方形的美麗圖案.在弦圖中(如圖2),已知點(diǎn)O為正方形ABCD的對(duì)角線BD的中點(diǎn),對(duì)角線BD分別交AH,CF于點(diǎn)P、Q.在正方形EFGH的EH、FG兩邊上分別取點(diǎn)M,N,且MN經(jīng)過(guò)點(diǎn)O,若MH=3ME,BD=2MN=4 .則△APD的面積為_____.
【答案】5
【解析】
連接FH,作EK∥MN,OL⊥DG,通過(guò)正方形的性質(zhì)和全等三角形的性質(zhì)以及勾股定理可求EM=1,可得EH=4,由勾股定理可求HD=2,AH=6,由平行線的性質(zhì)可得PH=1,即可求解.
如圖,連接FH,作EK∥MN,OL⊥DG
∵四邊形ABCD是正方形,且BD=2MN=4
∴MN=2,AB=2
∵四邊形EFGH是正方形
∴FO=HO,EH∥FG
∴∠HMO=∠FNO,∠MHO=∠NFO,且FO=HO
∴△MHO≌△FNO(AAS)
∴MH=FN
∵MH=3ME,
∴MH=FN=3EM,EH=EF=4EM
∴EK∥KN,EH∥FG
∴四邊形EMNK是平行四邊形
∴MN=EK=2,KN=EM
∴FK=2EM
∵EF2+FK2=EK2,
∴16EM2+4EM2=20
∴EM=1
∴EH=4,
∵AD2=(AE+4)2+DH2,且AE=DH
∴DH=AE=2
∴AH=6
∵PH∥OL
∴
∴PH=1
∴AP=5
∴S△APD=×5×2=5
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,是對(duì)角線與的交點(diǎn),是邊上的動(dòng)點(diǎn)(點(diǎn)不與重合),過(guò)點(diǎn)作垂直交于點(diǎn),連結(jié).下列四個(gè)結(jié)論:①;②;③;④若,則的最小值是1.其中正確結(jié)論是( )
A.①②③B.①③④C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長(zhǎng)線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長(zhǎng)為( )
A.8B.10C.13D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(4,2)點(diǎn)M是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),反比例函數(shù) (k>0,x>0)的圖象經(jīng)過(guò)點(diǎn)M且與邊AB交于點(diǎn)N,連接MN.
(1)當(dāng)點(diǎn)M是邊BC的中點(diǎn)時(shí),求反比例函數(shù)的表達(dá)式;
(2)在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,試證明:是一個(gè)定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫州茶山楊梅名揚(yáng)中國(guó),某公司經(jīng)營(yíng)茶山楊梅業(yè)務(wù),以3萬(wàn)元/噸的價(jià)格買(mǎi)入楊梅,包裝后直接銷(xiāo)售,包裝成本為1萬(wàn)元/噸,它的平均銷(xiāo)售價(jià)格y(單位:萬(wàn)元/噸)與銷(xiāo)售數(shù)量x(2≤x≤10,單位:噸)之間的函數(shù)關(guān)系如圖所示.
(1)若楊梅的銷(xiāo)售量為6噸時(shí),它的平均銷(xiāo)售價(jià)格是每噸多少萬(wàn)元?
(2)當(dāng)銷(xiāo)售數(shù)量為多少時(shí),該經(jīng)營(yíng)這批楊梅所獲得的毛利潤(rùn)(w)最大?最大毛利潤(rùn)為多少萬(wàn)元?(毛利潤(rùn)=銷(xiāo)售總收入﹣進(jìn)價(jià)總成本﹣包裝總費(fèi)用)
(3)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),楊梅深加工后不包裝直接銷(xiāo)售,平均銷(xiāo)售價(jià)格為12萬(wàn)元/噸.深加工費(fèi)用y(單位:萬(wàn)元)與加工數(shù)量x(單位:噸)之間的函數(shù)關(guān)系是y=x+3(2≤x≤10).
①當(dāng)該公司買(mǎi)入楊梅多少噸時(shí),采用深加工方式與直接包裝銷(xiāo)售獲得毛利潤(rùn)一樣?
②該公司買(mǎi)入楊梅噸數(shù)在 范圍時(shí),采用深加工方式比直接包裝銷(xiāo)售獲得毛利潤(rùn)大些?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一種紙巾盒,由盒身和圓弧蓋組成,通過(guò)圓弧蓋的旋轉(zhuǎn)來(lái)開(kāi)關(guān)紙巾盒.如圖2是其側(cè)面簡(jiǎn)化示意圖,已知矩形的長(zhǎng),寬,圓弧蓋板側(cè)面所在圓的圓心是矩形的中心,繞點(diǎn)旋轉(zhuǎn)開(kāi)關(guān)(所有結(jié)果保留小數(shù)點(diǎn)后一位).
(1)求所在的半徑長(zhǎng)及所對(duì)的圓心角度數(shù);
(2)如圖3,當(dāng)圓弧蓋板側(cè)面從起始位置繞點(diǎn)旋轉(zhuǎn)時(shí),求在這個(gè)旋轉(zhuǎn)過(guò)程中掃過(guò)的的面積.
參考數(shù)據(jù):,,取3.14.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為∠ABC的邊上的一點(diǎn),過(guò)點(diǎn)O作OM⊥AB于點(diǎn),到點(diǎn)的距離等于線段OM的長(zhǎng)的所有點(diǎn)組成圖形.圖形W與射線交于E,F兩點(diǎn)(點(diǎn)在點(diǎn)F的左側(cè)).
(1)過(guò)點(diǎn)作于點(diǎn),如果BE=2,,求MH的長(zhǎng);
(2)將射線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點(diǎn)的個(gè)數(shù),并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,弦AB垂直平分半徑OC,垂足為D.若點(diǎn)P是⊙O上異于點(diǎn)A,B的任意一點(diǎn),則∠APB=( )
A.30°或60°B.60°或150°C.30°或150°D.60°或120°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com