【題目】如圖,在△ABC中,CD是高,CE是中線,CE=CB,點(diǎn)A、D關(guān)于點(diǎn)F對(duì)稱,過點(diǎn)F作FG∥CD,交AC邊于點(diǎn)G,連接GE.AC=18,BC=12,則△CEG的周長(zhǎng)為

【答案】27
【解析】∵點(diǎn)A、D關(guān)于點(diǎn)F對(duì)稱,∴點(diǎn)F是AD的中點(diǎn).∵CD⊥AB,F(xiàn)G∥CD,∴FG是△ACD的中位線,AC=18,BC=12,∴CG=AC=9.
∵點(diǎn)E是AB的中點(diǎn),∴GE是△ABC的中位線,∵CE=CB=12,∴GE=BC=6,∴△CEG的周長(zhǎng)=CG+GE+CE=9+6+12=27.故答案為:27.
先根據(jù)點(diǎn)A、D關(guān)于點(diǎn)F對(duì)稱可知點(diǎn)F是AD的中點(diǎn),再由CD⊥AB,F(xiàn)G∥CD可知FG是△ACD的中位線,故可得出CG的長(zhǎng),再根據(jù)點(diǎn)E是AB的中點(diǎn)可知GE是△ABC的中位線,故可得出GE的長(zhǎng),由此可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知AB為⊙O的直徑,點(diǎn)C為 的中點(diǎn),點(diǎn)D在 上,連接BD、CD、BC、AD、BC與AD相交于點(diǎn)E.
(1)求證:∠C+∠CBD=∠CBA;
(2)如圖2,過點(diǎn)C作CD的垂線,分別與AD,AB,⊙O相交于點(diǎn)F、G、H,求證:AF=BD;
(3)如圖3,在(2)的條件下,連接BF,若BF=BC,△CEF的面積等于3,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:21 tan60°+(π﹣2015)0+|﹣ |;
(2)解方程:x2﹣1=2(x+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x﹣1)2﹣c的圖象如圖所示,則一次函數(shù)y=ax+c的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道l上確定點(diǎn)D,使CD與l垂直,測(cè)得CD的長(zhǎng)等于21米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù): =1.73, =1.41);
(2)已知本路段對(duì)校車限速為40千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過點(diǎn)A作AC⊥x軸,垂足為C,過點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E

(1)若AC=OD,求a、b的值。
(2)若BC∥AE,求BC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,F(xiàn) 是DC上一點(diǎn),BF⊥AC,垂足為 E,=,△CEF的面積為S1 , △AEB的面積為S2 , 則的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,測(cè)得∠CAO=45°,輪船甲自西向東勻速行駛,同時(shí)輪船乙沿正北方向勻速行駛,它們的速度分別為45km/h和36km/h,經(jīng)過0.1h,輪船甲行駛至B處,輪船乙行駛至D處,測(cè)得∠DBO=58°,此時(shí)B處距離碼頭O多遠(yuǎn)?(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四個(gè)結(jié)論中,錯(cuò)誤的是( 。
A.如果方程M有兩個(gè)相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)相等的實(shí)數(shù)根
B.如果方程M的兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同
C.如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根
D.如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是x=1

查看答案和解析>>

同步練習(xí)冊(cè)答案