【題目】如圖,在等腰△ABC中,ABBC,以AB為直徑的半圓分別交AC、BC于點(diǎn)D、E兩點(diǎn),BF⊙O相切于點(diǎn)B,交AC的延長(zhǎng)線于點(diǎn)F

1)求證:DAC的中點(diǎn);

2)若AB12sinCAE,求CF的值.

【答案】(1)證明見解析;(2)CF=.

【解析】

1)連接BD,由圓周角定理知DBAC,根據(jù)等腰三角形三線合一的性質(zhì)即可證得DAC的中點(diǎn).
2)根據(jù)切線的性質(zhì)得到∠ABF=90°,根據(jù)同弧所對(duì)的圓周角相等,得到∠CAE=∠CBD,又∠CBD=∠ABD,∠ABD=∠F,則sinCAEsinFsinABD,則

即可求出的長(zhǎng)度,即可求解.

(1)證明:連接DB,

AB是⊙O直徑,

∴∠ADB90°,

DBAC

又∵ABBC

DAC的中點(diǎn).

(2)解:∵BF與⊙O相切于點(diǎn)B

∴∠ABF90°,

∵∠CAE=∠CBD,

∴∠CBD=∠ABD,∠ABD=∠F,

sinCAEsinFsinABD

∴在ADBABF中,

AB12,

CFAFAC-=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A4,0),B為第一象限內(nèi)一點(diǎn),且OBAB,OB2

1)如圖①,求點(diǎn)B的坐標(biāo);

2)如圖②,將OAB沿x軸向右平移得到OAB,設(shè)OOm,其中0m4,連接BO,ABOB交于點(diǎn)C

①試用含m的式子表示BCO的面積S,并求出S的最大值;

②當(dāng)BCO為等腰三角形時(shí),求點(diǎn)C的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)是由拋物線y=﹣x2+x+2先作關(guān)于y軸的軸對(duì)稱圖形,再將所得到的圖象向下平移3個(gè)單位長(zhǎng)度得到的,點(diǎn)Q1(﹣2.25,q1),Q2(1.5,q2)都在拋物線y=ax2+bx+c(a≠0)上,則q1,q2的大小關(guān)系是( 。

A. q1>q2 B. q1<q2 C. q1=q2 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BCOB,點(diǎn)D上一動(dòng)點(diǎn),點(diǎn)ECD中點(diǎn),連接BD分別交OCOE于點(diǎn)F,G

(1)求∠DGE的度數(shù);

(2),求的值;

(3)記△CFB,△DGO的面積分別為S1S2,若k,求的值.(用含k的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸交于點(diǎn),且過拋物線的頂點(diǎn)和拋物線上的另一點(diǎn).

1)若點(diǎn)

①求拋物線解析式;

②若,求直線解析式.

2)若,過點(diǎn)軸的平行線與拋物線的對(duì)稱軸交于點(diǎn),當(dāng)時(shí),求的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yax2+bx3a0)與x軸交于點(diǎn)A(﹣10)和點(diǎn)B,且OB3OA,與y軸交于點(diǎn)C,此拋物線頂點(diǎn)為點(diǎn)D

1)求拋物線的表達(dá)式及點(diǎn)D的坐標(biāo);

2)如果點(diǎn)Ey軸上的一點(diǎn)(點(diǎn)E與點(diǎn)C不重合),當(dāng)BEDE時(shí),求點(diǎn)E的坐標(biāo);

3)如果點(diǎn)F是拋物線上的一點(diǎn).且∠FBD135°,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以每秒1個(gè)單位的速度運(yùn)動(dòng),連接,作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為

1)若僅在邊運(yùn)動(dòng),求當(dāng),三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)的的值.

2)在動(dòng)點(diǎn)在射線上運(yùn)動(dòng)的過程中,求使點(diǎn)到直線的距離等于3時(shí)對(duì)應(yīng)的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解飲料自動(dòng)售賣機(jī)的銷售情況,對(duì)甲、乙兩個(gè)城市的飲料自動(dòng)售賣機(jī)進(jìn)行抽樣調(diào)查,從兩個(gè)城市中所有的飲料自動(dòng)售賣機(jī)中分別抽取16臺(tái),記錄下某一天各自的銷售情況(單位:元)如下:

甲:25、45、3822、10、28、61、18、38、45、7845、58、32、16、78

乙:48、5221、2533、1242、39、41、42、33、4433、1868、72

整理、描述數(shù)據(jù):對(duì)銷售金額進(jìn)行分組,各組的頻數(shù)如下:

銷傳金額

3

6

4

3

2

6

a

b

分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)如下表所示:

城市

中位數(shù)

平均數(shù)

眾數(shù)

C

398

45

40

389

d

請(qǐng)根據(jù)以上信息,回答下列問題:

1)填空:a=, b= c=, d=

2)兩個(gè)城市目前共有飲料自動(dòng)售賣機(jī)4000臺(tái),估計(jì)日銷售金額不低于40元的數(shù)量約為多少臺(tái)?

3)根據(jù)以上數(shù)據(jù),你認(rèn)為甲、乙哪個(gè)城市的飲料自動(dòng)售賣機(jī)銷售情況較好?請(qǐng)說明理由(一條理由即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 y x2 mx 2m 4m>0).

1)證明:該拋物線與 x 軸總有兩個(gè)不同的交點(diǎn);

2)設(shè)該拋物線與 x 軸的兩個(gè)交點(diǎn)分別為 AB(點(diǎn) A 在點(diǎn) B 的右側(cè)),與 y 軸交于點(diǎn) C,AB,三點(diǎn)都在圓 P 上.

①若已知 B-30),拋物線上存在一點(diǎn) M 使ABM 的面積為 15,求點(diǎn) M 的坐標(biāo);

②試判斷:不論 m 取任何正數(shù),圓 P 是否經(jīng)過 y 軸上某個(gè)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo),若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案