【題目】如圖,已知⊙的半徑長為,、是⊙的兩條弦,且=, 的延長線交于點(diǎn),聯(lián)結(jié)、.
(1)求證:∽;
(2)記、、的面積分別為、、,若,求的長.
【答案】(1)證明見解析;(2).
【解析】分析:(1)、由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可證明△OAD∽△ABD;(2)、作OH⊥AC于H,設(shè)OD=x.用含x的代數(shù)式表示AD、AB、CD,再證明AD2=ACCD,列出方程即可解決問題;
詳解:(1)、證明:在和中,,∴≌,
∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B∵∠ADO=∠ADB ∴∽;
(2)、如圖(12)中,作OH⊥AC于H,設(shè)OD=,∵∽,∴,
∴, 解得:,,
∵ ,且,,,
∴, ∵,=-,
∴=(-),
整理得:, 解得:或,
經(jīng)檢驗(yàn):是分式方程的根,且符合題意,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小龍?jiān)趯W(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的家庭收入情況、他從中隨機(jī)調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤x<800 | 2 | 5% |
800≤x<1000 | 6 | 15% |
1000≤x<1200 | 45% | |
9 | 22.5% | |
1600≤x<1800 | 2 | |
合計(jì) | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)分布表;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)請你估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個(gè)結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有小正方形的邊長都為1,點(diǎn)O、P均在格點(diǎn)上,點(diǎn)P是∠AOB 的邊 OB 上一點(diǎn),直線PC⊥OA,垂足為點(diǎn)C.
(1)過點(diǎn) P 畫 OB 的垂線,交OA 于點(diǎn)D;
(2)線段 的長度是點(diǎn)O到直線PD 的距離;
(3)根據(jù)所畫圖形,判斷∠OPC ∠PDC(填“>”,“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著教育教學(xué)改革的不斷深入,應(yīng)試教育向素質(zhì)教育轉(zhuǎn)軌的力度不斷加大,體育中考已成為初中畢業(yè)升學(xué)考試的重要內(nèi)容之一。為了解某市九年級學(xué)生中考體育成績情況,現(xiàn)從中隨機(jī)抽取部分考生的體育成績進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制如下圖表:
2019年中考體育成績(分?jǐn)?shù)段)統(tǒng)計(jì)表 | ||
分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
25≤x<30 | 12 | 0.05 |
30≤x<35 | 24 | b |
35≤x<40 | 60 | 0.25 |
40≤x<45 | a | 0.45 |
45≤x<50 | 36 | 0.15 |
根據(jù)上面提供的信息,回答下列問題:
(1)表中a和b所表示的數(shù)分別為a=______,b=______;并補(bǔ)全頻數(shù)分布直方圖;
(2)甲同學(xué)說“我的體育成績是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù)。”請問:甲同學(xué)的體育成績在______分?jǐn)?shù)段內(nèi)?
(3)如果把成績在40分以上(含40分)定為優(yōu)秀那么該市12000名九年級考生中考體育成績?yōu)閮?yōu)秀的約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,梯形ABCD中,AB//CD,且AB=2CD,E,F分別是AB,BC的中點(diǎn).
EF與BD相交于點(diǎn)M.
(1)求證:△EDM∽△FBM;
(2)若DB=9,求BM.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com