【題目】已知:如圖,AC∥BD,請先作圖再解決問題.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)
①作BE平分∠ABD交AC于點E;
②在BA的延長線上截取AF=BA,連接EF;
(2)判斷△BEF的形狀,并說明理由.
【答案】(1)①見解析;②見解析;(2)△BEF是直角三角形;證明見解析.
【解析】
(1)①作BE平分∠ABD交AC于點E即可;
②在BA的延長線上截取AF=BA,連接EF;
(2)根據(jù)角平分線的性質(zhì)可得出∠ABE=∠EBD,再由平行線的性質(zhì)可知∠EBD=∠AEB,故可得出AE=AB,再由AB=AF可知AE=AF,進而可得出結(jié)論.
解:(1)①如圖,點E即為所求;
②如圖,AF,EF即為所求;
(2)∵BE平分∠ABD,
∴∠ABE=∠EBD.
∵AC∥BD,
∴∠EBD=∠AEB,
∴∠ABE =∠AEB,
∴AE=AB.
∵AB=AF
∴AE=AF,
∴∠AFE =∠AEF,
∵∠ABE +∠AEB+∠AFE +∠AEF=180°
∴∠AEB+∠AEF=90°
即∠BEF =90°
∴△BEF是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BC=2.點P從點A出發(fā)沿沿射線AB以1的速度運動,過點P作PE∥BC交射線AC于點E,同時點Q從點C出發(fā)沿BC的延長線以1的速度運動,連結(jié)BE、EQ.設(shè)點P的運動時間為t().
(1)求證:△APE是等邊三角形;
(2)直接寫出CE的長(用含的代數(shù)式表示);
(3)當(dāng)點P在邊AB上,且不與點A、B重合時,求證:△BPE≌△ECQ.
(4)在不添加字母和連結(jié)其它線段的條件下,當(dāng)圖中等腰三角形的個數(shù)大于3時,直接寫出t的值和對應(yīng)的等腰三角形的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求N點的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B是⊙O上的兩點,∠AOB=120°,C是的中點.
(1)如圖1,求∠A的度數(shù);
(2)如圖2,延長OA至點D,使OA=AD,連接DC,延長OB交DC的延長線于點E.若⊙O的半徑為1,求DE的長.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,,點C為x軸正半軸上一動點,過點A作交y軸于點E.
如圖,若點C的坐標(biāo)為,試求點E的坐標(biāo);
如圖,若點C在x軸正半軸上運動,且, 其它條件不變,連接DO,求證:OD平分
若點C在x軸正半軸上運動,當(dāng)時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個大正方形和四個全等的小正方形按圖①、②兩種方式擺放,設(shè)小正方形的邊長為x,請仔細觀察圖形回答下列問題.
(1)用含a、b的代數(shù)式表示x,則x= .
(2)用含a、b的代數(shù)式表示大正方形的邊長 .(請將結(jié)果化為最簡)
(3)利用前兩問的結(jié)論求出圖②的大正方形中未被小正方形覆蓋部分的面積.(用a、b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P、Q分別從點A、B同時開始移動,點P的速度為1 cm/秒,點Q的速度為2 cm/秒,點Q移動到點C后停止,點P也隨之停止運動下列時間瞬間中,能使△PBQ的面積為15cm 的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地出租車計費方法如圖,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象解答下列問題:
(1)該地出租車的起步價是 元;
(2)當(dāng)x>2時,求y與x之間的函數(shù)關(guān)系式;
(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com