(2007•哈爾濱)柜臺(tái)上放著一堆罐頭,它們擺放的形狀如圖所示:
第一層有2×3聽(tīng)罐頭,
第二層有3×4聽(tīng)罐頭,
第三層有4×5聽(tīng)罐頭,

根據(jù)這堆罐頭排列的規(guī)律,第n(n為正整數(shù))層有    聽(tīng)罐頭.(用含n的式子表示)
【答案】分析:本題可依次解出n=1,2,3,…,罐頭的聽(tīng)數(shù).再根據(jù)規(guī)律以此類推,可得出第n層罐頭的聽(tīng)數(shù).
解答:解:第一層有2×3=(1+1)(2+1)聽(tīng)罐頭,
第二層有3×4=(1+2)(3+1)聽(tīng)罐頭,
第三層有4×5=(1+3)(4+1)聽(tīng)罐頭,
故第n層有(1+n)(1+n+1)=(n2+3n+2)聽(tīng)罐頭.
點(diǎn)評(píng):解決此類探究性問(wèn)題,關(guān)鍵在觀察、分析已知數(shù)據(jù),尋找它們之間的相互聯(lián)系,探尋其規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•哈爾濱)如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著B(niǎo)C邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫(xiě)出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)秒時(shí),點(diǎn)G停止運(yùn)動(dòng),此時(shí)直線GH與y軸交于點(diǎn)N.另一動(dòng)點(diǎn)P開(kāi)始從B出發(fā),以1個(gè)單位/秒的速度沿著梯形的各邊運(yùn)動(dòng)一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點(diǎn)P可以與梯形的各頂點(diǎn)重合).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)M為直線HE上任意一點(diǎn)(點(diǎn)M不與點(diǎn)H重合),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,求出所有能使∠PHM與∠HNE相等的t的值.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(03)(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案