【題目】如圖,已知線段AB=2,MN⊥AB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結(jié)AC,DE.

(1)當∠APB=28°時,求∠B和 的度數(shù);
(2)求證:AC=AB.
(3)在點P的運動過程中
①當MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;
②記AP與圓的另一個交點為F,將點F繞點D旋轉(zhuǎn)90°得到點G,當點G恰好落在MN上時,連結(jié)AG,CG,DG,EG,直接寫出△ACG和△DEG的面積之比.

【答案】
(1)

解:∵MN⊥AB,AM=BM,

∴PA=PB,

∴∠PAB=∠B,

∵∠APB=28°,

∴∠B=76°,

如圖1,連接MD,

∵MD為△PAB的中位線,

∴MD∥AP,

∴∠MDB=∠APB=28°,

=2∠MDB=56°;


(2)

證明:∵∠BAC=∠MDC=∠APB,

又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,

∴∠BAP=∠ACB,

∵∠BAP=∠B,

∴∠ACB=∠B,

∴AC=AB;


(3)

解:①如圖2,記MP與圓的另一個交點為R,

∵MD是Rt△MBP的中線,

∴DM=DP,

∴∠DPM=∠DMP=∠RCD,

∴RC=RP,

∵∠ACR=∠AMR=90°,

∴AM2+MR2=AR2=AC2+CR2,

∴12+MR2=22+PR2,

∴12+(4﹣PR)2=22+PR2

∴PR= ,

∴MR=

Ⅰ.當∠ACQ=90°時,AQ為圓的直徑,

∴Q與R重合,

∴MQ=MR= ;

Ⅱ.如圖3,當∠QCD=90°時,

在Rt△QCP中,PQ=2PR= ,

∴MQ= ;

Ⅲ.如圖4,當∠QDC=90°時,

∵BM=1,MP=4,

∴BP= ,

∴DP= BP= ,

∵cos∠MPB= = ,

∴PQ= ,

∴MQ=

Ⅳ.如圖5,當∠AEQ=90°時,

由對稱性可得∠AEQ=∠BDQ=90°,

∴MQ= ;

綜上所述,MQ的值為

②△ACG和△DEG的面積之比為

理由:如圖6,∵DM∥AF,

∴DF=AM=DE=1,

又由對稱性可得GE=GD,

∴△DEG是等邊三角形,

∴∠EDF=90°﹣60°=30°,

∴∠DEF=75°=∠MDE,

∴∠GDM=75°﹣60°=15°,

∴∠GMD=∠PGD﹣∠GDM=15°,

∴GMD=∠GDM,

∴GM=GD=1,

過C作CH⊥AB于H,

由∠BAC=30°可得CH= AC= AB=1=MG,AH= ,

∴CG=MH= ﹣1,

∴SACG= CG×CH= ,

∵SDEG= ,

∴SACG:SDEG=


【解析】(1)根據(jù)三角形ABP是等腰三角形,可得∠B的度數(shù),再連接MD,根據(jù)MD為△PAB的中位線,可得∠MDB=∠APB=28°,進而得到 =2∠MDB=56°;(2)根據(jù)∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,進而得出AC=AB;(3)①記MP與圓的另一個交點為R,根據(jù)AM2+MR2=AR2=AC2+CR2 , 即可得到PR= ,MR= ,再根據(jù)Q為直角三角形銳角頂點,分四種情況進行討論:當∠ACQ=90°時,當∠QCD=90°時,當∠QDC=90°時,當∠AEQ=90°時,即可求得MQ的值為 ;②先判定△DEG是等邊三角形,再根據(jù)GMD=∠GDM,得到GM=GD=1,過C作CH⊥AB于H,由∠BAC=30°可得CH= AC=1=MG,即可得到CG=MH= ﹣1,進而得出SACG= CG×CH= ,再根據(jù)SDEG= ,即可得到△ACG和△DEG的面積之比.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)畫出數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:﹣4.5,﹣2,3,0,4;

(2)用號將(1)中各數(shù)連接起來;

(3)直接填空:數(shù)軸上表示3和表示1的兩點之間的距離是_____,數(shù)軸上A點表示的數(shù)為4,B點表示的數(shù)為﹣2,則A、B之間的距離是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過點A′,B,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),RtAOB中,∠A=90°AOB=60°,OB=AOB的平分線OCABC,過O點做與OB垂直的直線ON.動點P從點B出發(fā)沿折線BCCO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點C出發(fā)沿折線COON以相同的速度運動,當點P到達點OPQ同時停止運動.

1)求OC、BC的長;

2)設CPQ的面積為S,求St的函數(shù)關系式;

3)當POCQON上運動時,如圖(2),設PQOA交于點M,當t為何值時,OPM為等腰三角形?求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上, 老師要求同學們利用三角板畫兩條平行線.老師說苗苗和小華兩位同學畫法都是正確的,兩位同學的畫法如下:

苗苗的畫法:

①將含30°角的三角尺的最長邊與直線a重合,另一塊三角尺最長邊與含30°角的三角尺的最短邊緊貼;

②將含30°角的三角尺沿貼合邊平移一段距離,畫出最長邊所在直線b,則b//a.

小華的畫法:

①將含30°角三角尺的最長邊與直線a重合,用虛線做出一條最短邊所在直線;

②再次將含30°角三角尺的最短邊與虛線重合,畫出最長邊所在直線b,則b//a.

請在苗苗和小華兩位同學畫平行線的方法中選出你喜歡的一種,并寫出這種畫圖的依據(jù).

答:我喜歡__________同學的畫法,畫圖的依據(jù)是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】公元前5世紀,畢達哥拉斯學派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導致了第一次數(shù)學危機, 是無理數(shù)的證明如下: 假設 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個正整數(shù)).于是( 2=( 2=2,所以,q2=2p2 . 于是q2是偶數(shù),進而q是偶數(shù),從而可設q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是(
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學歸納法

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,延長AB至點E,延長CD至點F,使得BE=DF.連接EF,與對角線AC交于點O. 求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:

計算:

她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關系,利用這種關系,他順利地解答了這道題。

(1)前后兩部分之間存在著什么關系?

(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。

(3)利用(1)中的關系,直接寫出另一部分的結(jié)果。

(4)根據(jù)以上分析,求出原式的結(jié)果。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設備現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

A

B

價格萬元

a

b

處理污水量

240

200

a,b的值;

治污公司經(jīng)預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

同步練習冊答案