【題目】(本小題滿分8分)已知:如圖,△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE;垂足為E.
(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關(guān)系?請證明你的結(jié)論.
【答案】見解析;AB∥DE且AB=DE.
【解析】
試題(1)運用AAS證明△ABD≌△CAE;
(2)易證四邊形ADCE是矩形,所以AC=DE=AB,也可證四邊形ABDE是平行四邊形得到AB=DE.
試題解析:證明:(1)∵AB=AC,
∴∠B=∠ACD,
∵AE∥BC,
∴∠EAC=∠ACD,
∴∠B=∠EAC,
∵AD是BC邊上的中線,
∴AD⊥BC,
∵CE⊥AE,
∴∠ADC=∠CEA=90°
在△ABD和△CAE中
∴△ABD≌△CAE(AAS);
(2)AB∥DE,AB=DE,理由如下:
如圖所示,
∵AD⊥BC,AE∥BC,
∴AD⊥AE,
又∵CE⊥AE,
∴四邊形ADCE是矩形,
∴AC=DE,
∵AB=AC,
∴AB=DE,
∵AE∥BC,
∴四邊形ABDE是平行四邊形,
∴AB∥DE,AB=DE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東方向航行,行至A處測得燈塔P在它的北偏東60°的方向上,繼續(xù)向東行駛20分鐘后,到達B處又測得燈塔P在它的北偏東45°方向上,求輪船與燈塔的最短距離.(精確到0.1, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上: .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別a、a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為2,OA與x軸負半軸的夾角為15°,點B在拋物線y=ax2(a<0)的圖象上,則a的值為( )
A.
B.
C.﹣2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當(dāng)△EFC為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.
(1)在圖1中畫出鈍角△ABC,使它的面積為6(畫一個即可);
(2)在圖2中畫出△DEF,使它的三邊長分別為 、2 、5(畫一個即可).并且直接寫出此時三角形DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠A=90°,點D是BC的中點,點E,F分別在AB,AC上,且∠EDF=90°,連接EF,求證:BE2+CF2=EF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形相鄰兩邊的長分別是xcm和3cm,設(shè)長方形的面積為ycm2.
(1)試寫出長方形的面積y與x之間的關(guān)系式;
(2)利用(1)中的關(guān)系式,求當(dāng)x=5cm時長方形的面積;
(3)當(dāng)x的值由4cm變化到12cm時,長方形的面積由 cm2變化到 cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com