【題目】一個直立的火柴盒在桌面上倒下,啟迪人們發(fā)現(xiàn)了勾股定理的一種新的驗證方法.如圖,火柴盒的一個側(cè)面倒下到的位置,連接,設(shè)、,請利用四邊形的面積驗證勾股定理.

【答案】見解析.

【解析】

四邊形BCC′D′的面積,從大的一方面來說屬于直角梯形,可利用直角梯形的面積公式進行表示;從組成來看,由三個直角三角形組成.應(yīng)利用三角形的面積公式來進行表示.

證明:四邊形BCC′D′為直角梯形,
S梯形BCC′D′=BC+C′D′BD′= ,
又∵∠ABC=90°,RtABCRtABC
∴∠BAC=BAC
∴∠CAC=CAB+BAC=CAB+BAC=90°
S梯形BCC′D′=SABC+SCAC+SDAC= ;

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5C53.560.5;D60.567.5;E67.574.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=45°.以AB為直徑的⊙O與BC相切于B,交AC于點D,CO的延長線交⊙O于點E,過點作弦EF⊥AB,垂足為點G.

(1)求證:①EF∥CB,②AD=CD;
(2)若AB=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:(1)兩直線平行,內(nèi)錯角相等;(2)如果m是無理數(shù),那么m是無限小數(shù);(364的立方根是8;(4)同旁內(nèi)角相等,兩直線平行;(5)如果a是實數(shù),那么是無理數(shù).(6)平面內(nèi)的一條直線和兩條平行線中的一條相交,則它與另一條也相交;(7)直線外一點到這條直線的垂線段,叫做該點到直線的距離;(8)過一點作已知直線的平行線,有且只有一條.其中是真命題的有

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在直角坐標系中。

(1)請寫出ABC各點的坐標;

(2)求出ABC的面積SABC;

(3)若把ABC向上平移2個單位,再向右平移2個單位得A1B1C1,在圖中畫出A1B1C1,并寫出A1B1C1的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國很多地區(qū)持續(xù)出現(xiàn)霧霾天氣.某社區(qū)為了調(diào)查本社區(qū)居民對霧霾天氣主要成因的認識情況,隨機對該社區(qū)部分居民進行了問卷調(diào)查,要求居民從五個主要成因中只選擇其中的一項,被調(diào)查居民都按要求填寫了問卷.社區(qū)對調(diào)查結(jié)果進行了整理,繪制了如下不完整的統(tǒng)計圖表.被調(diào)查居民選擇各選項人數(shù)統(tǒng)計表

霧霾天氣的主要成因

頻數(shù)(人數(shù))

A大氣氣壓低,空氣不流動

m

B地面灰塵大,空氣濕度低

40

C汽車尾氣排放

n

D工廠造成的污染

120

E其他

60

請根據(jù)圖表中提供的信息解答下列問題:

(1)填空:m= , n= , 扇形統(tǒng)計圖中C選項所占的百分比為
(2)若該社區(qū)居民約有6 000人,請估計其中會選擇D選項的居民人數(shù).
(3)對于“霧霾”這個環(huán)境問題,請你用簡短的語言發(fā)出倡議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知射線CB//OA,∠C=OAB=100°E、FCB上,且滿足∠FOB=AOBOE平分∠COF

1)求∠EOB的度數(shù).(直接寫出結(jié)果,無需解答過程)

EOB=__________°

2)若在OC右側(cè)左右平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,請找出變化規(guī)律;若不變,請求出這個比值.

3)在OC右側(cè)左右平行移動AB的過程中,是否存在使∠OEC=OBA的情況?若存在,請直接寫出∠OEC度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,射線分別和直線交于點,射線分別和直線交于點,點在射線上運動(點與三點不重合),設(shè),,

(1)如果點兩點之間運動時,之間有何數(shù)量關(guān)系?請說明理由;

(2)如果點兩點之外運動時,之間有何數(shù)量關(guān)系?(只需寫出結(jié)論,不必說明理由)

查看答案和解析>>

同步練習(xí)冊答案