精英家教網 > 初中數學 > 題目詳情

【題目】如圖,要擰開一個邊長為a=6mm的正六邊形螺帽,扳手張開的開口b至少為(
A.6 mm
B.12mm
C.6 mm
D.4 mm

【答案】C
【解析】解:設正多邊形的中心是O,其一邊是AB, ∴∠AOB=∠BOC=60°,
∴OA=OB=AB=OC=BC,
∴四邊形ABCO是菱形,
∵AB=6mm,∠AOB=60°,
∴cos∠BAC=
∴AM=6× =3 (mm),
∵OA=OC,且∠AOB=∠BOC,
∴AM=MC= AC,
∴AC=2AM=6 (mm).
故選:C.

根據題意,即是求該正六邊形的邊心距的2倍.構造一個由半徑、半邊、邊心距組成的直角三角形,且其半邊所對的角是30度,再根據銳角三角函數的知識求解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為響應我市“中國夢”“宜賓夢”主題教育活動,某中學在全校學生中開展了以“中國夢我的夢”為主題的征文比賽,評選出一、二、三等獎和優(yōu)秀獎.小明同學根據獲獎結果,繪制成如圖所示的統(tǒng)計表和數學統(tǒng)計圖.

等級

頻數

頻率

一等獎

a

0.1

二等獎

10

0.2

三等獎

b

0.4

優(yōu)秀獎

15

0.3

請你根據以上圖表提供的信息,解答下列問題:

(1)a= , b= , n=
(2)學校決定在獲得一等獎的作者中,隨機推薦兩名作者代表學校參加市級比賽,其中王夢、李剛都獲得一等獎,請用畫樹狀圖或列表的方法,求恰好選中這二人的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年“五一節(jié)”前,某商場用60萬元購進某種商品,該商品有甲、乙兩種包裝共500件,其中每件甲包裝中有75個A種產品,每個A產品的成本為12元;每件乙包裝中有100個B產品,每個B種產品的成本為14元.商場將A產品標價定為每個18元,B產品標價定為每個20元.

(1)甲、乙兩種包裝的產品各有多少件?

(2)“五一節(jié)”商場促銷,將A產品按原定標價打9折銷售,B種產品按原定標價打8.5折銷售,“五一節(jié)”期間該產品全部賣完,該商場銷售該商品共獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著車輛的增加,交通違規(guī)的現象越來越嚴重,交警對某雷達測速區(qū)檢測到的一組汽車的時速數據進行整理,得到其頻數及頻率如表(未完成):

數據段

頻數

頻率

30﹣40

10

0.05

40﹣50

36

50﹣60

0.39

60﹣70

70﹣80

20

0.10

總計

200

1


(1)請你把表中的數據填寫完整;
(2)補全頻數分布直方圖;
(3)如果汽車時速不低于60千米即為違章,則違章車輛共有多少輛?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價 - 進價)×銷售量)

(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?

(2)通過市場調研,該商場決定在原計劃的基礎上,減少A種設備的購進數量,增加B種設備的購進數量,已知B種設備增加的數量是A種設備減少數量的1.5倍。若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數量至多減少多少套?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了響應市委和市政府綠色環(huán)保,節(jié)能減排的號召,幸福商場用3300元購進甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進價、售價如下表:

進價(元/只)

售價(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場甲、乙兩種節(jié)能燈各購進了多少只?

(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標軸上,∠ACB=900,且A0,4),點C20),BE⊥x軸于點E,一次函數y=x+b經過點B,交y軸于點D。

1求證;△AOC≌△CEB

2△ABD的面積。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片 ABCD 折疊,AE、EF 為折痕,點 C 落在 AD 邊上的 G 處, 并且點 B 落在 EG 邊的 H , AB=,BAE=30°,則 BC 邊的長為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABCD相交于點0,AOD=20°,DOF:FOB=1:7,射線OE平分∠BOF.

(1)求∠EOB的度數;

(2)射線OE與直線CD有什么位置關系?請說明理由.

查看答案和解析>>

同步練習冊答案